
Requirements for Practical Constraint Acquisition

Helmut Simonis
Insight SFI Research Centre for Data Analytics

School for Computer Science and Information Technology
University College Cork

Cork, Ireland
helmut.simonis@insight-centre.org

November 19, 2022

Constraint Acquisition [1] is one of the on-going research areas which com-
bines Constraint Programming (CP) and Machine Learning ideas. We argue
that the currently defined use case for Constraint Acquisition does not allow a
practical use of this technology, and a more general use case should be consid-
ered.

Constraint Acquisition (CA) is the process of defining a constraint model
from a set of example solutions and non-solutions. In most of the existing
literature, a model of a single problem instance is learned, which can then only
be used to generate new solutions of the same problem, or perhaps the same
problem with different domain bounds. In most practical CP applications, the
actual constraint model heavily depends on input data. Consider a scheduling
problem for a factory. Every day the set of orders that need to be scheduled will
be different, and from time to time new products or processes will be introduced.
A CP model for this factory needs to be able to create the appropriate constraint
model for a given dataset, and change the specific constraints of the instance
from one day to the next, due to different process steps or resources used. If
we want to acquire a generic constraint model in this scenario, we have to
understand how the number of variables, their domains, and the constraints
depend on the input data. Having acquired the model, we then should be able
to apply the model to a new, previously unseen set of input data, and solve the
resulting model. This is a more challenging problem than the use case previously
discussed in constraint acquisition.

We propose that Constraint Acquisition should consider a more general use
case: We are given a set of input data, solutions and non-solutions for multiple
problem instances of different sizes. A constraint acquisition tool produces
a generic model based on those problem instances. This model can then be
fed, together with new, unseen input data, into an existing constraint solver
to produce a solution for this new instance. The user can interact with the
Constraint Acquisition to accept or reject certain constraints, in addition the
users should be able to understand and extend the generated model if they so
wish.

This leads to the following set of properties that a generic constraint acqui-
sition tool should have:

1



diverse structure We must be able to handle not just a single set of unstruc-
tured variables, but a collection of variables, vectors and matrices, and
possibly more complex structures. We can exploit this structural infor-
mation to find likely constraints linking multiple structures, which would
be difficult to identify in an unstructured list.

hidden variables The variables described in the solution may not describe all
variables used in the constraint model. Some derived variables, especially
cost variables, may be missing from the samples, with only aggregate cost
values presented. The CA tool should reconstruct such missing, hidden
variables in order to find the complete constraint model.

generic The model should not be specific to one given instance only, but apply
to a series of instances which are specified by different input data and
parameter values.

consistent The generated model should be consistent, so that all given positive
samples are accepted, and all negative samples are rejected. A more chal-
lenging problem arises when is is possible that some instances are labelled
incorrectly.

minimal The model should not contain any constraints that are not required,
in particular any subsumed constraint should be filtered out.

transferable We must be able to use the generated model on new, previously
unseen input data, as long as the structure of the problem remains the
same.

executable It is not enough to generate an abstract model, we should be able
to execute the model with some existing constraint solver.

explainable We should be able to explain the generated model to a user not
familiar with specific constraint programming systems and languages. A
natural language description of the model would provide a good initial
explanation.

efficient As we are solving combinatorially hard problems, we will not be able
to solve every new problem instance. We consider the generated model
efficient if its runtime is comparable to a handwritten program for the
same problem written in a high-level modelling language like MiniZinc.

For the bridge event, we propose a discussion on the aims of Constraint
Acquisition, and how we can make this research more relevant to practical
constraint problems. This could take the form of a presentation of the ideas
presented here, followed by a discussion in the audience (or a panel) on this
topic. Minimum time would be 20 minutes for a presentation, followed by a
discussion phase of up to one hour.

References

[1] Christian Bessiere, Frédéric Koriche, Nadjib Lazaar, and Barry O’Sullivan.
Constraint acquisition. Artif. Intell., 244:315–342, 2017.

2


