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1 Abstract
Modern deep-learning architectures have unlocked the capability of training end-to-end models for

instance-specific predictions about CSP problems that take the raw representation of a problem instance
as the model input. Our work leverages exchangeable deep networks to reason about CSP problems in
an end-to-end fashion and ultimately to synthesize new algorithms. We will begin by describing work that
achieved state-of-the-art performance at predicting satisfiability of computationally-challenging SAT problems
(Cameron, Chen, et al., 2020). Next, we extended this architecture to develop Monte Carlo Forest Search
(MCFS), a new algorithm for automatically synthesizing strong UNSAT solvers for given distributions of
formulas (Cameron, J. Hartford, Lundy, Truong, et al., 2022). This work leverages ideas from the Monte
Carlo Tree Search (MCTS) algorithm that led to breakthroughs in AlphaGo and is applicable for guiding tree
search in any CSP domain. Finally, we will describe work in the predict-then-optimize setting (Cameron,
J. Hartford, Lundy, and Leyton-Brown, 2022) where model predictions generate the objective function or
constraints of an optimization problem, a setting which has attracted interest after the introduction of the
optimization-as-a-layer architecture.
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2 Presentation
We will present: Predicting SAT(Cameron, Chen, et al., 2020), Predict-then-optimize (Cameron, J. Hartford,
Lundy, and Leyton-Brown, 2022), MCFS (Cameron, J. Hartford, Lundy, Truong, et al., 2022)

Over the past two decades, machine learning has been shown to be very useful for making instance-
specific predictions about properties of CSP problems (e.g., algorithm runtime prediction (Hutter et al., 2014),
algorithm selection (Xu, Hutter, et al., 2008), and satisfiability prediction (Xu, Hoos, and Leyton-Brown,
2012)). A key drawback of this work is its reliance on hand-engineered features, requiring between linear and
cubic time in the size of the input. It is difficult to assess whether less computationally expensive features
would yield similar results, to determine whether important features are missing, and to translate a modeling
approach to a new domain. Learning representations end-to-end from raw problem descriptions via neural
networks is a promising approach for addressing these obstacles. Evans et al., 2018 and Selsam and
Bjørner, 2019 were among the first to apply this approach; this work is very interesting from a machine
learning perspective, but has tended to focus on problems that are trivial from a combinatorial optimization
perspective (e.g., requiring less than 1 second to solve for modern SAT solvers).

We will present our work on the first investigation of end-to-end deep networks for predicting satisfiability
on challenging distributions (hours to solve). We encode raw CNF SAT problems as permutation-invariant
sparse matrices, where rows represent clauses, columns represent variables, and matrix entries represent
whether or not a variable is negated. We used an exchangeable deep network architecture (J. S. Hartford
et al., 2018) that can handle arbitrary-sized problems and capture a key invariance exhibited by SAT problems
(and many other CSP domains): satisfiability status is unaffected by reordering constraints and variables
within constraints. We evaluated our approach on uniform-random 3-SAT instances at the phase transition
(50% satisfiable), primarily to facilitate comparison with past work. Despite the fact that our models did
not have access to hand-engineered features and that they were only able to learn linear-time computable
features, we achieved better performance than that of Xu, Hoos, and Leyton-Brown (2012). For example,
on 600-variable problems (which typically take hours to solve), we increased accuracy by 3% up to 84%.
Our work introduced the first example of state-of-the-art performance for the end-to-end modelling of the
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relationship between the solution to a combinatorial decision problem and its raw problem representation on
a distribution that is challenging for modern solvers.

Next, we turned our attention to leveraging exchangeable deep networks to guide decision making in
CSP solvers. It has long been tempting to use reinforcement learning to directly synthesize heuristic policies
that are optimized for problem distributions of interest. The idea dates back to Lagoudakis and Littman
(2001) who used TD-learning to train a policy to select between seven predefined branch heuristics based
on simple hand-crafted features. More recently, others have leveraged modern architectures (Kurin et al.,
2019; Tönshoff et al., 2022; Yolcu and Póczos, 2019), although none of these approaches has (yet) had
much impact in practice.

We asked whether the revolutionary breakthroughs in RL exemplified by AlphaGo (Silver et al., 2017)
constitute a game changer. The key idea behind AlphaGo was combining Monte Carlo Tree Search (MCTS)
rollouts with a neural network-based policy to find increasingly strong paths through the game tree. MCTS is
a promising approach for finding strong paths through any large combinatorial space. However, proving that
no solution exists in tree-search CSP solvers requires enumerating multiple paths to build out a proof tree
that demonstrates that all possible variable assignments lead to a conflict. The order in which variables are
assigned—the branching policy—has a dramatic effect on the size of the tree and the corresponding time to
solve the problem, so algorithm designers seek branching policies that lead to small trees.

We will present an extension to MCTS for finding small search trees in a forest of alternatives, which we
call Monte Carlo Forest Search (MCFS). The MCFS algorithm uses Knuth samples (Knuth, 1975) to obtain
path-based and unbiased Monte Carlo approximations of tree sizes, allowing us to leverage MCTS to search
over branching policies that produce trees. Since our deep neural network policies are far more expensive to
evaluate than standard heuristics, we bound policy evaluations by querying a known strong subsolver below
a certain depth in the proof tree. This focuses the search on early decisions where the policy has the highest
potential to reduce tree size relative to inference cost. We evaluated our approach by integrating MCFS
into the DPLL algorithm via the MiniSAT (Eén and Sörensson, 2003) framework and learning a branching
heuristic to efficiently find small proof trees of unsatisfiability. We matched or improved over the performance
of a strong baseline on two prominent SAT Competition distributions, highlighted by improving running time
on the sgen distribution by 9% over the kcnfs07 solver.

Finally, we will present our work on the predict-then-optimize setting, where real-world optimization
problems are generated from predictions from historical data (e.g., an optimizer that aims to recommend
fast routes relies upon travel-time predictions). Typically, learning the prediction model used to generate
the optimization problem and solving that problem are performed in two separate stages. Recent work has
showed how such prediction models can be learned end-to-end by differentiating through the optimization
task, launching a new research area bridging ML and CSP (Amos and Kolter, 2017). End-to-end methods
often yield empirical improvements, which are typically attributed to making better error tradeoffs than
the standard loss function used in a two-stage solution. We refine this explanation and more precisely
characterize when end-to-end can improve performance. When prediction targets are stochastic, a two-stage
solution must make an a priori choice about which statistics of the target distribution to model—we consider
expectations over prediction targets—while an end-to-end solution can make this choice adaptively. Even
when there is no limit on model capacity or training set size, we show how the two-stage approach can fail
catastrophically in the common case where the prediction stage models expectations over prediction targets.

We then consider a novel setting in which predict-then-optimize is a common paradigm and end-to-end
learning is particularly relevant: where multiple prediction targets are combined to obtain each of the objective
function’s coefficients. We show that this setting can give rise to potentially unbounded performance gaps
between the end-to-end and the two-stage approaches. These results highlight two main features of an
optimization problem that together can lead to suboptimal two-stage solutions, and that practitioners should
look out for in practice. The first is that multiple targets are learned independently, without accounting for
correlations. This is likely to happen when the targets are conceptually different and tend to be learned
separately, but may be correlated via latent factors that affect them both. The second is that targets are
combined nonlinearly to compute coefficients of the objective function for downstream optimization. This is
quite common in practice, notably where the cost of some decision is the product of two inputs (e.g., total
cost = cost/unit · #units). Although the reader might feel that two-stage learning is obviously problematic in
such domains, we illustrate that two-stage learning has been widely used in real-world optimization problems
likely to satisfy these conditions.
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