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Constraint Programming (CP) models a combinatorial
problem using constraints that each represent a large portion
of it and apply sophisticated dedicated search-space reduc-
tion algorithms on each, whose results are combined through
constraint propagation by dynamically reducing the domain
of each variable. These algorithms essentially ask whether a
given variable-value pair 〈xi, d〉 can appear (meaning vari-
able xi being assigned value d) in solutions to a given con-
straint. If it cannot, that variable-value assignment can cer-
tainly be removed from consideration since it must satisfy
every constraint. Such filtering algorithms, applied through-
out the solving process, can greatly reduce the search space
to be explored.

One can view the set of solutions to a constraint or in-
deed to the whole problem as a multivariate discrete distribu-
tion. In that light, the filtering algorithms mentioned above
seek to identify the support of that distribution with respect
to each variable, i.e. the set of values that have non-zero
frequency in the corresponding marginal distribution. Con-
ventional constraint propagation essentially exchanges the
supports of marginal distributions — I recently proposed to
exchange whole marginal distributions (Pesant 2019). This
required changes to the core of CP software systems: main-
taining not only a domain of possible values for each vari-
able but also a marginal distribution over that domain; a
new operation on constraints, computing marginal distri-
butions through weighted counting; replacing the propaga-
tion fixpoint algorithm by a sum-product message-passing
algorithm, i.e. iterated belief propagation (BP). I imple-
mented the resulting CP-BP framework in the publicly-
available research prototype MiniCPBP [github.com/
PesantGilles/MiniCPBP].

I recently led a two-year project funded by an IVADO
[ivado.ca/en] fundamental research grant investigating
the combination of CP and Machine Learning for tasks
involving hard structure. We considered expressing such
structure as constraints in a CP model and using the marginal
distributions computed in the CP-BP framework either dur-
ing the training or inference phases.
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In the context of a constrained sequence generation task:
For training, reinforcement learning was successfully used
to combine in its reward signal the loss function from a pre-
trained RNN with the marginals and constraint violations
from CP, in order to adjust the weights of the RNN (Lafleur,
Chandar, and Pesant 2022); for inference when we wish to
enforce long-term structure, the learned probabilities of the
sequence model were mixed with the marginal probabilities
of the CP model describing that structure and the next pre-
dicted token was then sampled from the resulting probability
distribution (Manibod and Pesant 2022).

In the context of a structured prediction task: We com-
pared against recent efforts from the CP research commu-
nity to improve training by incorporating into the loss func-
tion a term related to the support of each variable (Silvestri,
Lombardi, and Milano 2021), and to perform inference by
solving an optimization problem over a CSP according to
class probabilities (Mulamba et al. 2020). We showed that
our ability to work with marginal distributions both greatly
increases post-training accuracy by replacing coarse sup-
ports with finer-grained marginals and accelerates predic-
tion inference by more simply solving a satisfaction problem
fed with the class probabilities as marginals (Sargordi et al.
2022).

I would give a 30- to 60-minute talk on the CP-BP frame-
work and its application to neuro-symbolic AI systems.
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