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Abstract

There has been significant interest in developing methods that bridge between classical optimization and
modern deep learning, under the broad theme of learning to optimize (L2O), for improved optimizers.
In this paper, we propose Switch-L2O – a new primal-only method for learning a constraint optimizer.
Empirically, our method is shown to enjoy a better optimality gap and reduces constraint violations against
prior methods on convex and nonconvex optimization problems with possibly nonconvex constraints.

1 Introduction

Learning to optimize (L2O) is an emerging approach that leverages machine learning to develop optimization
methods, aiming at faster convergence as well as higher accuracy [3]. The learned optimizer is trained
over a set of similar optimizees that represent the task distribution (offline training) and designed to solve
unseen optimizees from the same distribution (online testing). The goal is to minimize the weighted sum
of the objective function f(xt) over a time span (i.e., unrolling length) T given by

min
ϕ

Ef∈T

[
T∑
t=1

wtf(xt)

]
, with xt+1 = xt − g(zt;ϕ), t = 1, . . . , T − 1, (1)

where the mapping function g is parameterized by ϕ and T represents the target task distribution, with
wt set to 1.

Since naive L2O approaches cannot enforce the hard constraints, Donti et al. [4] designed deep
constraint completion and correction (DC3), which first approximately solves for a partial set of variables
via neural networks, then completes other variables using the equality constraints, and finally fixes inequality
violations by multi-step gradient-based updates. Shen et al. [5] proposed Twin-L2O, using two LSTMs
to separately update decision variables and dual variables. Although the above methods achieve some
success, they suffer from several disadvantages, namely: 1) the relative error of objective and the relative
error of decision variables are nontrivial, 2) the results of DC3 are sensitive to the fixed dual variable
and DC3 requires tuning the dual variable for different problems (and thus not general), 3) gradient
descent in the inequality correction step of DC3 may not work for general optimization formulations
when the initialization is not close to an optimum, 4) the training of Twin-L2O may be unstable, and 5)
the primal-dual framework of Twin-L2O is sensitive to the initialization of the Lagrange multiplier. To
circumvent these issues, we propose Switch-L2O – a model-free primal-only L2O method designed
for general constrained optimization (possibly nonconvex) with a small constraint violation and
optimality gap.
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2 Switch-L2O

Since the equality constraints can be written as two inequality constraints, we consider the general
constrained optimization setting as follows:

minimize
y∈Rn

f(y), s.t. gi(y) ≤ 0, ∀i ∈ [m], (2)

where f and g are potentially nonlinear and nonconvex. We will use g (without suffix) to denote the set of
all gi.

2.1 Primal-dual framework

As is well-known, general constrained optimization formulation, when solved by the primal-dual framework,
is equivalent to handling a minimax optimization with dual variables λ satisfying λ ≥ 0. That is,

min
y∈Rn

max
λ∈Rm

+

f(y) + λT g(y) =: L(y, λ). (3)

This formulation is used in Twin-L2O [5], proposing two LSTMs that separately update y and λ as:

yt+1 = yt +∆yt, where
(
∆yt, h

min
t+1

)
= LSTMmin

(
[∇yL (yt, λt) ,∇λL (yt, λt)] , h

min
t ;ϕmin

)
,

λt+1 = [λt +∆λt]+ , where
(
∆λt, h

max
t+1

)
= LSTMmax ([∇yL (yt+1, λt) ,∇λL (yt+1, λt)] , h

max
t ;ϕmax) ,

where [·]+ = max(·, 0). The corresponding L2O loss is given by:

L
(
ϕmin, ϕmax

)
= EL∼T

[
T∑
t=1

{(L (yt, λt−1)− L (yt, λt)) + (L (yt, λt−1)− L (yt−1, λt−1))}

]
. (4)

2.2 New primal-only framework

As alluded to above, in practice a primal-dual optimization framework may be sensitive to the initialization
of the Lagrange multiplier [1]. In the proposed Switch-L2O, we use only the primal form in the setting of
learning a constrained optimizer alternating the optimization between the objective and the constraints
using a single LSTM. The loss function at each time step t is defined as:

Lt(yt;ϕ) =

{
f(yt), if gi(yt) ≤ ξ,∀i ∈ [m]∑m

i=1(max(gi(yt), 0))
2, if gi(yt) > ξ,∃i ∈ [m].

(5)

where ξ ≥ 0 is a slack hyperparameter and the loss function L(ϕ) (to learn the optimizer) is defined as

L(ϕ) = E(f,g)∼T

[
T∑
t=1

Lt(yt;ϕ)

]
, (6)

with the update: yt+1 = yt +∆yt and (∆yt, ht+1) = LSTM(∇yLt(yt;ϕ), ht;ϕ) . (7)

3 Experimental results

We adopt three metrics to analyze the performance of the new primal framework. The first one is the
relative error of objective (average over all test samples), i.e., 1

ntest

∑ntest
i=1

f i(yit)−f i(yi∗)
|f i(yi∗)|

. The second one is
the mean of constraint violation (average), i.e., 1

ntest

∑ntest
i=1

1
m

∑m
j=1max(gij(y

i
t), 0). The third one is the

relative error of decision variables (average), i.e., 1
ntest

∑ntest
i=1

∥yit−yi∗∥
∥yi∗∥

. We use OSQP [6] to calculate yi∗ for
convex optimization, while IPOPT solver [7] finds yi∗ for nonconvex optimization. While conducting our
experiments, we found that the Twin-L2O baseline model diverges when we only use one of the gradients
as input in LSTMMin and LSTMMax even if the dimension of decision variables is 1. To use both gradients
as input, we should guarantee the dimension of y and λ are the same, which can be achieved by duplicating
the provided inequalities.
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Table 1: Switch-L20 results on a convex QP task.

Method Rel-obj Vio-mean Rel-d.v.s

DC3 (λ = 1) -0.0592 0.0212 0.2128
DC3 (λ = 5) -0.0940 0.0039 0.2637
Twin-L2O -0.3171 0.0779 0.6423
Switch-L2O (ξ = 0.1) -0.1526 0.0031 0.4936
Switch-L2O (ξ = 1) -0.0015 0.1147 0.1482

Figure 1: Switch-L20 Results on a convex QP task. In brackets, we show the slack parameter, ξ.

3.1 Convex QP

To test the effectiveness of the proposed primal framework, we consider a convex quadratic programming
(QP) problem with 100-dimensional decision variables and 50 inequality constraints, given by:

minimize
y∈Rn

1

2
yTQy + pT y, s.t. Ay ≤ x, (8)

for constants Q ∈ Rn×n ⪰ 0, p ∈ Rn, A ∈ Rnineq ×n, and variable x ∈ Rnineq . We take Q to be a diagonal
matrix with all diagonal entries drawn i.i.d. from the uniform distribution on [0, 1], p with entries drawn
i.i.d. from the uniform distribution on [0, 1], x with entries drawn i.i.d. from the uniform distribution on
[−1, 1], and A with entries drawn i.i.d. from the standard normal distribution.

The vast majority of hyperparameter selection follows [2]. We use 200 optimizee instances for training,
100 optimizees for validation, and 100 hold-out instances for testing. We train Switch-L2O solvers for 200
epochs, using Adam with a constant learning rate 0.003. For each epoch, Switch-L2O will update the
optimizee parameters for 100 iterations, with its unrolling length T = 20.

Table 1 and Figure 1 illustrate the superior performance of Switch-L2O in solving convex QP tasks,
which enjoys a smaller optimality gap and constraint violation compared with DC3 and Twin-L2O. For
Switch-L2O itself, there is a trade-off between the optimality gap and constraint violation by adjusting
the slack parameter ξ. With the increase of the slack parameter (from 0.1 to 1.0), the relative error of
objective and decision variables decreases at the cost of an increase in constraint violation. Additionally, a
trade-off exists for the DC3 method by selecting different fixed dual variables λ. A smaller dual variable
(λ = 1) contributes to a smaller optimality gap, while it suffers from a larger violation.

3.2 Nonconvex optimization

We also empirically evaluate our approach on two nonconvex formulations, namely: (i) nonconvex objective
with linear constraints (9), and (ii) nonconvex objective with nonconvex constraints (10):

minimize
y∈Rn

1

2
yTQy + pT sin(y), s.t. Ay ≤ x. (9)

minimize
y∈Rn

1

2
yTQy + pT sin(y), s.t. A sin(y) ≤ x. (10)
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Table 2: Switch-L20 results on nonconvex optimization.

Method
Nonconvex obj & linear constraints Nonconvex obj & constraints
Rel-obj Vio-mean Rel-d.v.s Rel-obj Vio-mean Rel-d.v.s

DC3 (λ = 1) -0.0977 0.0201 0.2625 -0.0836 0.0620 0.2432
Twin-L2O -0.0614 0.0641 0.274 -0.1632 0.0019 0.8134
Switch-L2O (ξ = 0.1) -0.0353 0.0005 0.2148 -0.0257 0.0070 0.1771
Switch-L2O (ξ = 1) 0.0251 0.1970 0.0816 0.0341 0.2015 0.0781

For nonconvex optimization, Table 2 and Figures 2 and 3 display the superior performance of Switch-
L2O, which enjoys a smaller optimality gap and constraint violation compared with DC3 and Twin-L2O.
Similar to convex optimization, a trade-off between the optimality gap and constraint violation is made by
tuning the slack parameter ξ for Switch-L2O.

Figure 2: Results on nonconvex optimization (nonconvex objective with linear constraints).

Figure 3: Results on a nonconvex optimization (nonconvex objective and nonconvex constraints).

4 Conclusions and future work

In this paper, we present Switch-L2O, a general-purpose constrained optimization solver trained to optimize
using neural networks. Our key idea is to split the optimization iterations either to minimize the objectives
or the constraint violations. The former learns to optimize the objective, while the latter ensures the
solutions are within the feasible region. Our formulation is primal-only and thus avoids the drawbacks of
prior approaches, while also empirically demonstrating better convergences and optimality gaps. A future
direction of this work would be to improve the computational cost of our approach.
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