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Abstract

Many real-world structured prediction and content generation
problems need machine learning to capture data distribution
and constraint reasoning to ensure structure validity. Never-
theless, tools for constrained structured prediction and con-
tent generation are limited because of the lack of effective ap-
proaches to bridge constraint satisfaction and machine learn-
ing. We propose COnstraint REasoning embedded structured
learning (CORE), a scalable constraint reasoning and machine
learning integrated approach for learning over structured do-
mains. We propose to embed the reasoning module as a layer
in the sequential neural networks for structured prediction
and content generation. We evaluate CORE on several appli-
cations: vehicle dispatching service planning, if-then program
synthesis, text2SQL generation, and constrained image gen-
eration. The proposed CORE module demonstrates superior
performance over state-of-the-art approaches in all the appli-
cations. The structures generated with CORE satisfy 100% of
the constraints, when using exact decision diagrams.

Introduction
The emergence of large-scale constraint reasoning and ma-
chine learning technologies have impacted virtually all ap-
plication domains, including linguistics, operations, and vi-
sion. Constraint reasoning has traditionally been applied
to building prescriptive models that generate solutions for
strategic, tactical, or operational use (Xue, Choi, and Dar-
wiche 2012). It requires a precise problem description and
is usually difficult to be made flexible to the evolving data
distributions. Machine learning, on the other hand, has been
applied primarily to build predictive models, such as classi-
fications or regressions (Bishop 2007). While the structure
of a machine learning model (like a neural net) must be de-
signed, the actual model parameters are learned via gradient
descent. This gives machine learning models the flexibility
to adapt to the evolving data distributions. Nevertheless, it
is difficult to enforce constraints on the output of machine
learning models. Many real-world applications are beyond
the reach of constraint reasoning or machine learning alone.

In our recent line of work (Jiang et al. 2022; Xue and Ho-
eve 2019; Jacobson and Xue 2022), we have been focus-
ing on structured prediction and content generation prob-
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Figure 1: (Up) Our proposed CORE framework embeds con-
straint reasoning in into structured learning problems. At a
high level, CORE (in blue colored box) is a fully differen-
tiable layer that filters out the infeasible output from the
structured output to ensure constraint satisfaction. (Bottom)
We demonstrate the effectiveness of CORE on vehicle dis-
patching service, if-then program synthesis, Text2SQL gen-
eration, and constrained image generation tasks.

lems. Both learning problems require a tight integration of
constraint reasoning and machine learning. Structured pre-
diction and content generation have diverse application do-
mains, ranging from natural language processing (Socher
et al. 2013) to scene generation (Deng et al. 2021; Arad Hud-
son and Zitnick 2021).

The applications we consider in this paper all require tight
integration of constraint reasoning and machine learning.
Our first application, vehicle dispatching service planning,
recommends a route that satisfies daily service needs while
meeting driver preferences. Historical data may reveal that
the drivers do not follow common stylized objectives such
as minimizing distance or time. Therefore, standard con-
straint reasoning tools, e.g., solvers for the traveling sales-
man problem, cannot be applied. While we need machine
learning to capture the drivers’ implicit objective functions,
pure machine learning-based approaches are insufficient be-
cause they often generate routes that violate delivery re-
quests. Our second and third applications are program syn-
thesis from natural language, which clearly requires ma-
chine learning to generate structured programs. Neverthe-
less, a pure learning approach cannot enforce the syntactic
and grammar rules of those programs. Our last application



is constrained image generation, which must generate fea-
sible positions for a set of objects to be rendered in the im-
age under user-defined positional constraints. A deep diffu-
sion model can then inpaint the scene with background and
position-organized objects, generating a “realistic” image.
The pure deep generative model tends to fail on the number
of objects, as well as the positional constraints of the objects,
while our reasoning approach does not.

We propose Constraint Reasoning embedded Structured
Prediction (CORE), a scalable constraint reasoning and ma-
chine learning integrated approach for learning over the
structured domains. The main idea is to augment struc-
tured predictive models with a constraint reasoning module
that represents physical and operational requirements. See
Figure 1 for our proposed CORE model, which integrates
constraint reasoning and machine learning for all applica-
tions. In the first three applications, we embed decision di-
agrams (Akers 1978) as a differentiable module into neural
networks that can enforce constraint satisfaction of the out-
puts during training and testing. A decision diagram (DD)
encodes each solution (an assignment of values to variables
satisfying the constraints) as a path from the root to the ter-
minal in the diagram. DD regards neural network predictions
as the simulation of descending along a path in the decision
diagram. DD filters out variable assignments from the neu-
ral network predictions that violate constraints. For the last
application, we embed a tree search algorithm which carries
out step-by-step reasoning of the spatial positions of every
object. The spatial reasoning module decides the objects’
positions following the output of a Recurrent Neural Net-
work (RNN) in a process of iterative refinement. The RNN
outputs the bounding boxes for each object to be generated.
When determining one coordinate of the bounding box, the
RNN iteratively halves the range of the coordinate until it
is sufficiently small. During learning, the RNN is trained to
learn implicit spatial knowledge, such as trees growing from
the ground and birds flying in the sky. During inference, ex-
plicit constraints can be enforced by a forward-checking tree
search algorithm, which removes all those position plans
leading to constraint violation.

In experimental analysis, we demonstrate the effective-
ness of CORE on the following four applications: (1) Ve-
hicle Dispatching Service Planning: a route planning prob-
lem that recommends routes to drivers to meet the service
needs while satisfying the drivers’ preferences. The im-
plicit preferences of drivers are learned from the historical
traveling data. The input of this problem is the daily ser-
vice requests. The output is the permutations of the ser-
vice locations, representing the sequential order that the
locations should be visited by the drivers. This task re-
quires machine learning models to capture drivers’ pref-
erences from the traveling data, and constraint reasoning
to ensure the satisfaction of service requests. (2) If-then
Program Synthesis: the task is to automatically synthesize
conditional programs from the natural language. Automatic
program synthesis tools are useful to streamline the pro-
gram of a few online services such as IFTTT and Za-
pier. The if-then program is in the form of: if trigger
function happens in the trigger service, then take

the action function from the action service.
The machine learning task, therefore, is to predict the
quadruple (trigger service, trigger function,
action service, action function). This appli-
cation again requires machine learning to understand the
semantics of the natural language, as well as constraint
reasoning to satisfy the syntactic rules of the programs.
(3) Text2SQL Generation: this application is to automati-
cally generate SQL queries that extract information from
a database to answer a question posed in natural language.
The neural model is used to understand the user’s queries
in natural language, while the constraint reasoning tool is
applied to ensure the model generates grammatically-valid
SQL queries. (4) Constrained Scene Generation: our last ap-
plication is to render/generate images containing those spec-
ified objects, where the objects need to satisfy the positional
constraints, e.g., the object “moon” should be placed higher
than “house” in the image.

Our proposed CORE framework demonstrates superior
performance against state-of-the-art approaches in all appli-
cations. First, the structures generated by CORE are better
in constraint satisfaction. In vehicle service dispatching, all
CORE generated routes are valid, while a conditional gen-
erative adversarial network (cGAN) without CORE gener-
ates on average less than 1% of valid routes when handling
medium-sized delivery requests. For if-then program syn-
thesis, the percentage of valid programs produced increased
from 88% to 100% with the CORE module incorporated into
the baseline. For Text2SQL, the percentage of valid SQL
queries increased from 83.7% to 100% with CORE incorpo-
rated into the baseline on the testing set. For constrained im-
age generation, the locations of the placed objects satisfy the
given specifications. CORE also improves the learning per-
formance of structured prediction models. We show that the
routes generated by CORE better fulfill drivers’ preferences
than cGAN without CORE. In if-then program synthesis,
CORE module leads to approximately 2.0% improvement in
accuracy compared with the baseline. In Text2SQL genera-
tion, the CORE module improves around 4.2% in execution
accuracy. In constrained image generation, CORE can gener-
ate realistic scene images with all the objects present and po-
sitioned at their natural locations. CORE also works well in
zero-shot transfer learning: it generates good-quality scenes
satisfying constraints unseen from the training set without
retraining or fine-tuning.
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