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Abstract

The topic of fairness has attracted a lot of attention in the
machine learning literature (Barocas, Hardt, and Narayanan
2017) with the typical group-level fairness explored be-
ing disparate impact. Our AAAI 2020 paper and followup
(Davidson and Ravi 2020b; Davidson et al. 2022) pointed out
how disparate impact can be encoded as a cardinality con-
straint and that satisfying this constraint for a single protected
status is efficiently solvable. We also showed how to use this
constraint in an optimization setting to minimally modify a
k-block set partition to make it fairer. Later work (Davidson
and Ravi 2020a, 2022) studied auditing the output of outlier
detection and clustering algorithms by searching for a under-
representation (count) of a protected status combination in
one group and an over-representation in another. We formu-
lated integer linear programs (ILPs) for these problems since
the underlying feasibility problems are NP-hard. We briefly
summarize these papers and present some new directions for
fairness we hope the CP community can help with.

1 Introduction
The AI community has made a lot of progress towards mak-
ing algorithms fairer. Fairness has been studied in the con-
text of many major machine learning (ML) tasks such as
clustering, classification, ranking, embedding and anomaly
detection. Fairness can be broadly broken down into two cat-
egories: individual-level fairness and group-level fairness.
Our work focuses on the latter, and in particular, on a legal
definition of fairness known as disparate impact. Generally
speaking, disparate impact encodes the notion that the frac-
tion of protected status individuals chosen by an algorithm
(or associated with an action) must be approximately equal
to the fraction of the protected status individuals in the gen-
eral population. For example, if the general population con-
tains 50% females, then approximately 50% of individuals
selected for a job interview must be female.

We pointed out (Davidson and Ravi 2020b; Davidson
et al. 2022) that disparate impact can be easily encoded
as a cardinality constraint by counting the number of pro-
tected status individuals in a group and comparing it to a
constant (the fraction of individuals in the population with
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the protected status). Our first work showed that satisfy-
ing disparate impact for a single protected status can be
solved efficiently. This was done by showing that the un-
derlying constraint matrix is totally unimodular. We also
showed that satisfying a form of individual level fairness
(Davidson and Ravi 2007, 2020b) is also efficiently solv-
able. However, while satisfying either individual-level fair-
ness or group level fairness is efficiently solvable satisfying
both individual- and group-level constraints is computation-
ally intractable.

The above results are for a single protected status vari-
able. Our later work (Davidson and Ravi 2020a, 2022) ex-
plored auditing the output of an algorithm that produces a
k-block partition for fairness. This is done by searching for a
protected status combination that is over-represented in one
block and under-represented in another block. We formu-
lated this as an ILP and showed that a variety of different
counting constraints can be used to encode different forms
of disparate impact-like fairness.

Next, we briefly summarize these papers and discuss fu-
ture work in the area of fairness as constraint satisfaction we
hope the CP community can contribute to.

2 Modifying a Clustering to Enhance
Fairness

Many different clustering algorithms, with a variety of set-
tings, formulations and followings by end user communities,
are available (see e.g., (Xu and Wunsch 2005)). It is unlikely
that fair versions of all these algorithms or future clustering
algorithms will be developed. So, it is useful to study the
setting where one already has a good clustering Π and the
goal is to modify Π to improve its fairness.

The fairness measure considered in our work uses is based
on protected status variables (PSVs). Our focus has been
on the simplest but most common type of PSVs, namely
binary variables such as gender. To provide a formal def-
inition of our fairness measure, we introduce some defini-
tions. Consider a data set D where there is one PSV x. The
data items in D for which the variable x has value 1 will
be referred to as special items. Suppose D, with Nx special
items, has been partitioned into k clusters, denoted by C1,
C2, . . ., Ck. Then the number of special data items per clus-
ter could be set to be approximately Nx/k, to effectively



balance the protected status instances uniformly across all
clusters. This gives rise to one definition of fairness:

Definition 2.1. Let D be a dataset where each data item
has a single binary protected attribute x. Let Nx denote the
number of special data items inD. A partition ofD into k ≥
2 clusters is strongly fair with respect to x if in each cluster,
the number of special items is either bNx/kc or dNx/ke.

Relaxed versions of this definition have also been consid-
ered in (Davidson and Ravi 2020b). In particular, to enforce
fairness based on a common disparate impact criterion, one
would require each cluster to have at least 0.8 × Nx/k and
at most 1.2×Nx/k special items.

The Minimum Cluster Modification for Fairness
(MCMF) problem is the following: given an existing clus-
tering (defined through a k×n allocation matrix Z, where k
is the number of clusters and n is the number of instances),
find a minimal modification that makes the clustering fairer
with respect to a single PSV. A general linear function that
can represent a variety of minimization objectives (e.g., the
number of instances moved, increase distortion) is presented
in (Davidson et al. 2022). Here, we will focus on the neces-
sary constraints to achieve fairness.
(a) Constraints to achieve strong fairness: The constraints
serve a two-fold purpose: to balance the protected instances
across clusters whilst also restricting Z to be a legal clus-
ter allocation matrix. For concreteness, we use the encod-
ing where indicator vectors are stacked column-wise; that
is zi,j = 1 iff instance j is assigned to cluster i. We en-
code protected status as a vector P of length n with an entry
of 1 if the instance has the status and 0 otherwise. We use
|P | to denote the number of non-zero entries in the vector
P . (Thus, |P | is the number of special items in the dataset.)
Our first two constraints (in the formulation given below) re-
quire that the distribution of the protected variable be upper
and lower bounded. For example, to follow our definition of
strong fairness (see Definition 2.1), we would have the con-
straint b |P |

k c ≤
∑

j pjzi,j ≤ d
|P |
k e ∀i; in other words, the

upper bound Ui = d |P |
k e and the lower bound Li = b |P |

k c.
In solving ILPs, such inequality constraints are changed to
equality constraints using slack variables (Schrijver 1998);
we use ui and li respectively as the slack variables in the
upper and lower bound constraints for

∑
j pjzi,j . In the fol-

lowing specification of constraints, we generalize this to any
upper and lower bounds and note they can vary depend-
ing on the cluster. The last set of constraints below (i.e.,∑

i zi,j = 1 ∀j) simply require that Z is a valid allocation
matrix. ∑

j

pjzi,j + ui = Ui, ∀i (1)

−
∑
j

pjzi,j + li = −Li, ∀i (2)

∑
i

zi,j = 1, ∀j (3)

One of the results shown in (Davidson et al. 2022) is the
following.

Result #1: The constraint matrix for the MCMF problem
is totally unimodular. Hence, the MCMF problem can be
solved in polynomial time for any linear objective function
using an efficient linear programming solver.

For a definition of a totally unimodular matrix and why
integer linear programs where the constraint matrix is totally
unimodular can be solved in polynomial time, we refer the
reader to (Schrijver 1998).
(b) Constraints to enforce group-level fairness: For many
data sets, instance-level constraints are used to guide clus-
tering algorithms towards desirable solutions (Wagstaff and
Cardie 2000). As an example, the must-link (ML) constraint
ML(x, y) requires that instances x and y must be placed
in the same cluster. In the context of fairness, ML con-
straints can be used to enforce group-level fairness (David-
son et al. 2022). The feasibility problem with ML constraints
(i.e., is there a k-block clustering that satisfies all the given
ML constraints?) can be solved efficiently (Davidson and
Ravi 2007). However, as the following result indicates, the
situation changes completely when one requires a cluster-
ing that satisfies strong fairness and the given ML con-
straints (Davidson et al. 2022).
Result #2: The problem of determining whether a data set
can be partitioned into k clusters that satisfy strong fairness
and ML constraints is NP-complete.

It should be noted that Result #2 holds even when there is
no requirement regarding the quality of the clustering.

3 Detecting Unfairness in Outlier Detection
and Clustering

This section focuses on the problem of auditing the output of
outlier detection and clustering algorithms to detect unfair-
ness. Here, we assume that there is a set of PSVs. Our work
searches for over/under-represented PSV combinations de-
noted by x (which represent groups of individuals). To tie
our work back to classic set cover formulations (Garey and
Johnson 1979) in theoretical computer science, we formu-
late our work as searching for a minimum number of oc-
currences of a disjunction of PSVs (e.g., Male ∨ Young)
that is an over-represented in a class compared to the other
classes (e.g., in the rest of the population). We search across
all PSV combinations (groups of people) to find examples
of unfairness. If no such PSV combination is returned, then
we conclude that the division of people into classes is fair.
A domain expert can determine whether the type of unfair-
ness found is acceptable (or interesting), and our formula-
tions can be run again to explicitly avoid finding such ex-
amples of unfairness. For brevity, we discuss one form of
unfairness, namely count-based unfairness; for other forms
of unfairness, we refer the reader to our paper (Davidson and
Ravi 2022).
Count-based unfairness: This applies a rule similar to the
traditional definition of statistical parity (Kearns et al. 2018);
it requires that the count of instances satisfying a PSV com-
bination x (normalized by the class size) in a class is nearly
the same as the proportion of the PSV count in the rest of the
population. This definition of fairness says that a division is
unfair if any class violates this rule. We now discuss how



constraints can be used to specify such fairness criteria in
the context of outlier detection (Davidson and Ravi 2020a).
We have extended this approach to clustering in (Davidson
and Ravi 2022).

We assume that the PSVs are binary-valued. Given a sub-
set x of PSVs, we say that x covers an instance y if for at
least one of the PSVs in x, the value of the corresponding
attribute of y is 1. For a given data set D, suppose an out-
lier detection algorithm outputs D′ as the set of outliers. Let
α and β be respectively the fraction of instances in D′ and
D − D′ (i.e., the set of normal instances) that are covered
by x. Let a value 0 < δ < 1 be specified by a domain ex-
pert as the unfairness threshold. Then, x provides a pattern
of unfairness if the constraint |β − α| ≥ δ is satisfied. An
outlier detection algorithm is deemed fair if there is no sub-
set of PSVs with respect to which the output of the outlier
detection algorithm is unfair. The following result is shown
in (Davidson and Ravi 2022).
Result #3: The problem of determining whether there is a
combination of PSVs that indicates unfairness is NP-hard.
The problem can be formulated as an ILP.

We note that the ILP formulation for this problem needs
constraints to capture the notion of coverage and to express
the bounds to be satisfied by fraction of instances covered
by a subset x of PSVs (Davidson and Ravi 2020a). Also,
more complex constraints are needed when this formulation
is extended to clustering especially when utility values are
associated with clusters (Davidson and Ravi 2022).

4 Future Work Involving Fairness and
Constraints

We believe that future work on fairness will examine more
complex forms of fairness specifications and constraint pro-
gramming will play an important role in identifying methods
to enhance fairness and auditing the outputs of ML algo-
rithms to detect unfairness. We briefly mention some of the
possibilities below.

1. That the constraint matrix for disparate impact fairness
for a single protected status is totally unimodular begs
the questions what other forms of fairness constraints are
totally unimodular and how can this be useful?

2. Disparate impact is a very narrow definition of legal fair-
ness but does not completely fulfill the requirement of an
ethical algorithm. For example, an algorithm can satisfy
disparate impact but can make many inaccurate predic-
tions on protected status individuals. How to efficiently
encode different types of fairness as constraints is a crit-
ical topic.

3. Our existing work makes a clustering fairer by mov-
ing individual points between clusters. More complex
forms of modifying a given clustering (e.g., splitting a
cluster into multiple new clusters) may be needed to
improve fairness. Such modifications change composi-
tions of clusters significantly and some of the modifica-
tions may actually reduce the fairness. So, more complex
forms of constraints will be needed to specify the allow-
able set of modifications.

4. In auditing for fairness, more complex notions of cover-
age may be needed. For example, for a combination x of
PSVs to cover an instance y, the values of the attributes
of y for two or more PSVs may be required to be 1. Also,
some applications may need PSVs that can take on more
than two integer values, thus permitting more complex
coverage requirements. As a consequence, suitable forms
of constraints are needed to capture such requirements.

5. There may also be new restrictions/constraints on the
combination of PSVs that provide indications of unfair-
ness. For example, one may require such a combination
to include or exclude certain subsets of PSVs. Develop-
ing suitable specifications of such constraints while en-
suring that constraint solvers can scale to large data sets
will be very beneficial to practitioners.
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