
One Model, Any CSP: Graph Neural Networks as
Fast Global Search Heuristics for Constraint Satisfaction
Jan Tönshoff, Berke Kisin, Jakob Lindner, Martin Theisen, Martin Grohe

Abstract
We propose ANYCSP1, a universal Graph Neural Network architecture which can be
trained as an end-2-end search heuristic for any Constraint Satisfaction Problem (CSP).
Our architecture can be trained unsupervised with policy gradient descent to generate
problem specific heuristics for any CSP in a purely data driven manner. The approach
is based on a novel graph representation for CSPs that is both generic and compact
and enables us to process every possible CSP instance with one GNN, regardless of con-
straint arity, relations or domain size. Unlike previous RL-based methods, we operate
on a global search action space and allow our GNN to modify any number of variables
in every step of the stochastic search.
1 Tönshoff, Jan, et al. ”One model, any CSP: Graph neural networks as fast global search heuristics for
constraint satisfaction.”, IJCAI-23 (2023)

Constraint Satisfaction Problems
Generic framework for modelling discrete optimization problems. Well known CSPs
are SAT, graph coloring and maximum cut.

CSP-Instance I = (X , C,D):
• Variables X ={X1,. . ., Xn}, Domains D={D(X1),. . .,D(Xn)}
• Constraints C={C1,. . ., Cm} of the form C=(sC , RC):
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CSP Instance I :

X = {X,Y, Z}

D(X) = {1, 2, 3}
D(Y ) = {1, 2}
D(Z) = {1, 2}

C1 : X ≤ Y
C2 : Y ̸= Z

Assignment α = (2, 1, 2)

Training
Quality of assignment α for instance I = (X , C,D):

QI(α) = |{C ∈ C : α |= C}|/|C|
Assume training distribution of CSP instances Ω. Objective:
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Reward in iteration t encourages iterative improvements:
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with q(t) = max0≤t′<t QI(α
(t′)). Optimize with policy gradients (REINFORCE):
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Policy GNN πθ

A trainable policy πθ maps the current constraint value graph to a new soft assignment
φ(t) and updates recurrent states h(t):

πθ : G(I, α(t−1)
), h

(t−1) 7→ φ
(t)

, h
(t)

πθ is a heterogeneous GNN based on message passing:
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REINFORCE vs Actor-Critic
A critic c learns to estimate gain Gt from recurrent state h(t), which speeds up learning
through a baseline (replacing Gt in policy gradient):

At = Gt − c(h
(t)

)

and temporal difference learning (replacing Gt everywhere):
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Geometric reward including quality and improvement:

r
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Entropy regularization incentivizes exploration:
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Results
• earlier, faster, and more robust learning
• better in distribution and on decision problems
• less stable
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