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Abstract Policy GNN 7y

We propose ANYCSP!, a universal Graph Neural Network architecture which can be A trainable policy g maps the current constraint value graph to a new soft assignment
trained as an end-2-end search heuristic for any Constraint Satisfaction Problem (CSP). ©® and updates recurrent states h(*):

Our architecture can be trained unsupervised with policy gradient descent to generate

problem specific heuristics for any CSP in a purely data driven manner. The approach my : G(Z, a(f‘_l)), R @(‘), n®

is based on a novel graph representation for CSPs that is both generic and compact
and enables us to process every possible CSP instance with one GNN, regardless of con-
straint arity, relations or domain size. Unlike previous RL-based methods, we operate
on a global search action space and allow our GNN to modify any number of variables

in every step of the stochastic search. @

7p is a heterogeneous GNN based on message passing:

(©)
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Constraint Satisfaction Problems (@]

Generic framework for modelling discrete optimization problems. Well known CSPs
are SAT, graph coloring and maximum cut.
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CSP-Instance Z = (X,C, D):
e Variables X = {X1.. .., Xn}, Domains D={D(X1),. .., D(Xn)} Global Search

e Constraints C={C1,..., Cy, } of the form C:(sc Rc)'
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Constraint Value Graph

CSP Instance 7 :
X ={X,Y, 7} X Y Z

D(X)={1,2,3}
D(Y) = {1,2}
D(Z) ={1,2 .
C( >X<{Y } REINFORCE vs Actor-Critic
1 S
Co: Y #Z A critic ¢ learns to estimate gain Gy from recurrent state R, which speeds up learning

Assignment a = (2, 1,2) through a baseline (replacing G in policy gradient):

Ay = Gy — o(RY)

and temporal difference learning (replacing G everywhere):

Training
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anmg(T) Geometric reward including quality and improvement:
cou
Reward in iteration t encourages iterative improvements: 100
t
0 = \/(Qz(a®) = Qz(al®))r®
Lo _ {0 if Qz(al) < ')
T Qz(@®) =g if Qr(a®) > ¢ Entropy regularization incentivizes exploration:
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