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Abstract

Machine learning and automatic reasoning stand as two fundamental pillars of artificial
intelligence (AI). Machine learning, particularly through neural network techniques, has made
significant strides in learning from complex data. Automatic reasoning, exemplified by con-
straint programming, brings interpretability and robustness to the table. However, machine
learning faces significant challenges, primarily its lack of formal guarantees, leading to failures
in situations divergent from its training data. Addressing some of the most pressing problems
of our time necessitates integrating machine learning with automatic reasoning. We illustrate
the power of this integration in two domains: automated design through our SPRING system
and scientific discovery via our CVGP system. Both systems significantly outperform state-of-
the-art machine learning-only baselines, underlining the critical importance of this integrative
approach in advancing Al

1 Introduction

Automatic reasoning and machine learning are two fundamental pillars of artificial intelligence
(AI) Machine learning approaches — especially neural networks — have spearheaded major de-
velopments in learning from diverse and unstructured data, discovering hidden or fuzzy patterns,
and producing effective predictive and generative models. Automatic reasoning approaches like
constraint programs have produced efficient and reliable algorithms that can provide formal guar-
antees, interpretability, and robustness.

Despite its astounding success, pure neural-based learning is limited in several ways. Neural-
based learning is perceptive — it creates knowledge from patterns in data. This means that it is
adaptable but does not give formal guarantees. Therefore, it will often fail in contexts that are unlike
its training data. This is exemplified by modern neural-based text-to-image generators, which often
fail to uphold instructions regarding many objects or spatial relationships between objects.

Consequently, for many of the greatest problems of our time, integrating machine learning and
automated reasoning is the most effective approach, as the strengths of each approach complement
each other. We demonstrate this integration in two application domains. Firstly, we look at interior
design generation. Good designs need to meet industry standards and user needs, while captur-
ing subtle aspects such as aesthetics and convenience. Learning to generate objects with neural
networks is a standard approach for this. Neural networks excel in learning to generate visually
pleasing and functional designs. However, they often falter in adhering to precise user specifica-
tions, particularly when faced with constraint combinations not previously encountered in training
datasets. For example, in Figure 1, a toaster must be added to the left of the oven and below the sink
(already in the image). Additionally, a microwave needs to be added to the right of the oven. In the
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Figure 1: An interior design generated by our proposed SPRING model (middle) with a given back-
ground already containing an oven and a sink among other objects (left). The user specifications
are at the bottom (provided to SPRING in the form of propositional logic; natural language text is
used here to aid readability). SPRING creates a design satisfying the specifications. Text-to-image
approaches like Stable Diffusion (right) often fail to meet these constraints.

right panel, the Stable Diffusion Rombach et al. [2022] model (one of the state-of-the-art neural
generative models), taking the input of the initial kitchen configuration and the text specifications,
simply alters the entire scene, producing results that look pleasing but do not fit the specification.
This is emblematic of a deep issue with purely neural algorithms — thus far, they have failed to
grasp the high-level symbolic understanding that automatic reasoning approaches can handle ef-
ficiently. We approach this problem by embedding a constraint reasoning solver within a neural
architecture, allowing the system to iteratively reach a solution that is both explicitly constrained
and implicitly natural.

In the domain of automatic scientific discovery, we also find that reasoning can correct for
the innate limitations of learning. Specifically, symbolic regression, which involves learning the
governing expression from experimental data, plays a crucial role in this automation. We integrate
an automatic reasoning module into the discovery process to determine 1) the potential data to
collect, and 2) the essential models to train, thereby enhancing the likelihood of identifying the
correct expression. The reasoning algorithm initially fixes all independent variables except one,
instructing the data generator to gather datasets for these controlled variables. Subsequently, it
directs the symbolic regressor, a genetic programming algorithm, to uncover the simplified expres-
sion involving only the single variable left free. This approach of identifying an expression with
fewer input variables, while keeping others controlled, simplifies the task compared to discovering
an expression that includes all variables simultaneously. The reasoning module then sequentially
releases one independent variable at a time. In each iteration, the GP-based regressor adapts the
previously learned equations to include the new independent variable through processes such as
mating, mutation, and selection. This reasoning process is repeated until all independent variables
are incorporated into the symbolic expression. An illustrative example of this process is provided
in Figure 2.

In both applications, our reasoning-embedded learners outperformed purely machine-learning
approaches. In design generation, a human study was conducted to evaluate our approach in spec-
ification satisfaction, aesthetic appeal, background preservation, and spatial naturalness. Our ap-
proach demonstrated equal or superior performance in terms of aesthetic appeal and spatial natural-
ness when compared to the purely neural baseline. More importantly, it significantly outperformed
the baseline in meeting specific design specifications and preserving the integrity of the back-
ground. In symbolic regression, we demonstrate that the reasoning-integrated method, i.e., control
variable genetic programming (CVGP), finds the symbolic expressions with the smallest Normal-
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Figure 2: Running example of CVGP. The whole pipeline is determined by the reasoning module
that query for the controlled variable dataset and asks the regressor to learn the reduced form
expression. (a) Initially, a reduced-form equation ¢’ = Cix; — Cs is found via fitting control
variable data in which x5, z3, x4 are held as constants and only x; is allowed to vary. (b) This
equation is expanded to C5x; — Cyx9 in the second stage via fitting the data in which only 3, x4
are held as constants. (¢,d) This process continues until the ground-truth equation ¢ = z1x3 — xoxy
is found. The data generated for control variable experiment trials in each stage are shown at the
bottom.

ized Mean-Square Errors (NMSE) among all 7 competing approaches on 21 noiseless benchmark
datasets and 20 noisy benchmark datasets. In the ablation studies, we show our CVGP is consis-
tently better than the baselines when evaluated in different evaluation metrics, evaluating different
quantiles of the NMSE metric, with different amounts of Gaussian noise added to the data We also
show our CVGP has a higher rate of recovering the ground-truth expressions than baselines.

2 Spatial Reasoning Integrated Generator for Interior Design

We introduce Spatial Reasoning Integrated Generator (SPRING) for design production. SPRING
combines neural and constraint reasoning to analyze indoor scenes and generate object placements
as bounding boxes. This process is refined by neural models and symbolic constraints, ensuring
designs meet user specifications while maintaining aesthetic appeal. Given an initial indoor scene
and user requirements described in propositional logic, the task is to generate a design that satis-
fies user specifications, looks pleasing, and follows common sense. The essence of SPRING is the
embedding of a neural and symbolic integrated spatial reasoning module within the deep gener-
ative network. The spatial reasoning module decides the locations of the objects to be generated in
the form of bounding boxes, following an iterative refinement approach. The bounding boxes are
predicted by a sequence-to-sequence neural model and are further filtered by symbolic constraint
reasoning (forward checking). This integrated approach leverages the advantages of both neural
and symbolic approaches: the constraint program deals with explicit specifications, such as user
requirements, while neural networks handle aesthetics and common sense.

SPRING consists of three modules. The first perception module based on Detection Trans-
formers (DETR) [Carion et al., 2020] extracts existing object positions from input images. It is
followed by the spatial reasoning module, which uses neural and symbolic integrated approaches
to generate the bounding boxes. When determining one coordinate of the bounding box (e.g., the x,



y coordinates, width, or height), the recursive neural network in the spatial reasoning module iter-
atively halves the range of each coordinate until it is sufficiently small. During learning, the spatial
reasoning module is trained to understand implicit spatial knowledge, such as potted plants usually
being located on the floor, etc. Learned knowledge is reflected in the decisions it makes (that is,
which half range of the coordinate falls into in every step). Training is completed by a teacher-
forcing procedure that matches the bounding boxes predicted by the spatial reasoning module and
those that contain the objects in the training images. During inference, explicit spatial constraints
are enforced by a symbolic reasoning algorithm, which blocks decisions that necessarily lead to
constraint violations. Finally, the bounding boxes are filled by a visual element generator, which is
a diffusion model. The full version of this work is available at [Jacobson and Xue, 2023].

3 Reasoning-enhanced System for Al-driven Scientific Discovery

Our recently proposed Control Variable Genetic Programming (CVGP) implements the reasoning
algorithm into the scientific discovery process based on Genetic Programming, for symbolic re-
gression over many independent variables [Jiang and Xue, 2023]. The key insight of CVGP is to
learn from a customized set of control variable experiments; in other words, the experiment data
collection adapts to the learning process. This is in contrast to the current learning paradigm of
most symbolic regression approaches, where they learn from a fixed dataset collected a priori.

In CVGP, first, we hold all independent variables except for one as constants and learn an ex-
pression that maps the single variable to the dependent variable using GP. GP maintains a pool of
candidate expressions and improves the fitness of these equations via mating, mutating, and selec-
tion over several generations. Mapping the dependence of one independent variable is easy. Hence
GP can usually recover the ground-truth reduced-form equation. Then, CVGP frees one indepen-
dent variable at a time. In each iteration, GP is used to modify the equations learned in previous
generations to incorporate the new independent variable, via mating, mutating, and selection. Such
a procedure repeats until all the independent variables have been incorporated into the symbolic
expression. See figure 2 for the high-level idea of algorithm execution. Theoretically, in the origi-
nal paper, we show that CVGP as an incremental builder can reduce the exponential-sized search
space for candidate expressions into a polynomial one when fitting a class of symbolic expres-
sions. Experimentally, we show that CVGP outperforms a number of state-of-the-art approaches
on symbolic regression over multiple independent variables.
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