
CP for ILP
AAAI 2024 Bridge on Constraint Programming and Machine Learning

Pitch or Discussion Track

Andrew Cropper and Céline Hocquette
University of Oxford

andrew.cropper@cs.ox.ac.uk, celine.hocquette@cs.ox.ac.uk

1 Inductive logic programming
Inductive logic programming (ILP) [11, 4] is a form of supervised machine learning (ML). As
with other forms ofML, the goal is to induce a hypothesis that generalises training examples.
However, whereas most forms of ML use tables to represent data, ILP uses logic programs
(sets of logical rules). Moreover, whereas most forms of ML learn functions, ILP learns rela-
tions.

ILP has several attractive features [5]. For instance, it is data efficient and can induce hy-
potheses from small numbers of examples. Moreover, because of logic’s similarity to natural
language, logic programs can be easily read by humans, which is crucial for explainable AI.

2 CP for ILP
Classical ILP approaches search by revising a hypothesis through the addition and removal
of literals [13, 12, 1, 14]. These approaches use heuristics, such as information gain, to guide
the search through the hypothesis space. An emerging trend in ILP is to formulate the ILP
problem as a constraint problem (CP). For instance, ASPAL [2] encodes an ILP problem as
an answer set programming (ASP) problem. Specifically, ASPAL constructs an ASP program
that describes every training example and every possible rule in the hypothesis space. ASPAL
then asks an ASP solver to find a subset of the rules that covers all the positive but none of
the negative examples.

The main advantages of these recent ILP-as-CP approaches is that they can more eas-
ily learn recursive programs and use state-of-the-art CP solvers. However, most approaches
encode the ILP problemas a single one-shot CP instance. These approaches, therefore, strug-
gle to scale to non-trivial problems. For instance, because ASPAL precomputes every possible
rule it struggles to learn rules with more than a few literals.

3 Popper
Popper [8, 3, 6, 7] encodes an ILP problem as a CP problem, where each solution to the
CP problem represents a hypothesis. However, rather than precompute every possible rule,

1



the key idea of Popper is to incrementally discover constraints from smaller hypotheses to
rule out larger hypotheses. Specifically, Popper uses a generate, test, and constrain loop to
generate hypotheses and test them on the examples. In the generate stage, Popper asks a CP
solver to find a solution to the CP instance, where the solution corresponds to a hypothesis.
In the test stage, Popper tests the hypothesis on the training examples. If a hypothesis is too
general (entails too many negative examples), Popper builds constraints to prune logically
more general programs from the hypothesis space, as they too will be too general. Likewise,
if a hypothesis is too specific (entails too few positive examples), Popper builds constraints
to prune logically more specific hypotheses, as they too will be too specific. Popper adds
these constraints to the CP problem to prune solutions and thus prune hypotheses. Popper
repeats this loop until it finds a good hypothesis or there are no more hypotheses.

4 Popper at CP-ML bridge
Popper combines various forms of CP for ML, including ASP, SMT, SAT, and MaxSAT. For in-
stance, Popper uses ASP to generate hypotheses. It usesMaxSAT solvers to find combinations
of hypotheses with minimal description length [10]. It also uses SMT solvers to search for hy-
potheses with numerical values [9]. We, therefore, think that Popper would interest a broad
audience at the CP-ML bridge program.

We want to be at the bridge because we want to collaborate with CP researchers. In par-
ticular, we want to improve the scalability and efficiency of Popper by using CP tools better.
For instance, we encode our generate stage as an ASP problem, which is often the bottle-
neck of Popper. However, we only use ASP becausewe have a logic programming background
knowledge. We do not need answer set semantics so it is plausible that another CP paradigm
is more suitable for this task. Moreover, there might be alternative ways to encode our CP
problems.

5 Pitch/discussion presentation
We propose to give a brief (<20 minutes) introduction to ILP and Popper. The emphasis of
the presentation will be on the use of CP for ILP and, in particular, the current limitations of
Popper due to our current CP approach. The goal is to foster collaboration between CP and
ILP researchers. We expect for both authors of this proposal to attend the bridge program.

References
[1] H. Blockeel and L. De Raedt. Top-down induction of first-order logical decision trees.

Artif. Intell., (1-2):285–297, 1998.

[2] D. Corapi, A. Russo, and E. Lupu. Inductive logic programming in answer set program-
ming. In Inductive Logic Programming - 21st International Conference, pages 91–97,
2011.

2



[3] A. Cropper. Learning logic programs though divide, constrain, and conquer. In Thirty-
Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, pages 6446–6453. AAAI
Press, 2022.

[4] A. Cropper and S. Dumancic. Inductive logic programming at 30: A new introduction. J.
Artif. Intell. Res., 74:765–850, 2022.

[5] A. Cropper, S. Dumancic, R. Evans, and S. H. Muggleton. Inductive logic programming
at 30. Mach. Learn., 111(1):147–172, 2022.

[6] A. Cropper and C. Hocquette. Learning logic programs by combining programs. In ECAI
2023 - 26th European Conference on Artificial Intelligence, volume 372, pages 501–508.
IOS Press, 2023.

[7] A. Cropper and C. Hocquette. Learning logic programs by discovering where not to
search. In Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pages 6289–
6296. AAAI Press, 2023.

[8] A. Cropper and R. Morel. Learning programs by learning from failures. Mach. Learn.,
(4):801–856, 2021.

[9] C. Hocquette and A. Cropper. Relational program synthesis with numerical reasoning. In
Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, pages 6425–6433.
AAAI Press, 2023.

[10] C. Hocquette, A. Niskanen, M. Järvisalo, and A. Cropper. Learning mdl logic programs
from noisy data, 2023.

[11] S. Muggleton. Inductive logic programming. New Generation Computing, (4):295–318,
1991.

[12] S. Muggleton. Inverse entailment and progol. New Generation Comput., (3&4):245–
286, 1995.

[13] J. R. Quinlan. Learning logical definitions from relations. Mach. Learn., pages 239–266,
1990.

[14] A. Srinivasan. The ALEPH manual. Machine Learning at the Computing Laboratory,
Oxford University, 2001.

3


