
Constraint Acquisition By Transformer

Samaksh Chandra, Steven Prestwich, Gregory Provan
University College Cork, Ireland
CPML 2024



Overview
• Constraint acquisition (CA) is an active research area in Constraint Programming (CP).

• CA aims to automate CP by learning constraints for combinatorial problems from 
examples of solutions and (often) non-solutions. (Some methods are ACTIVE and 
involve user interaction, but we are interested in PASSIVE methods that do not.)

• Methods have been based on a range of approaches from machine learning and 
optimization, but so far generative AI has played only a small role.

• We present an attempt at such an approach for SAT, called CNFformer, using a 
transformer to learn to generate propositional satisfiability models.



Constraint Programming
• CP provides powerful modeling languages and solvers for constrained optimization and 

decision-making problems and has many applications.

• A constraint satisfaction problem (CSP) consists of a set of variables, each with a 
domain of possible values, and a network of constraints each defined on a subset of the 
variables. Modelling a new application as a CSP requires expertise, which can impede 
the uptake of CP. This has motivated the development of CA.

• Learning a CSP is NP-Hard and CA is known to be a challenging task.



Constraint Acquisition
• CA has been developed for over 20 years and a variety of approaches have been 

explored.

• From a set of possible constraints (candidates) called the bias, we must select which 
are to be learned, based on training data containing examples of solutions and (usually) 
non-solutions.

• CA has been identified as an important topic and as progress toward the Holy Grail of 
computer science: the user presents a problem to the computer in a natural manner, 
and the computer solves it.



Constraint Acquisition

• Existing CA methods are based on a wide variety of techniques from ML and other 
areas: inductive logic programming, version space learning, classifiers, sequential 
analysis, data mining, posing the CA problem as an optimization or CP problem, and
approaches based on grammars or tensors.

• A few CA methods can generalize to different problem sizes, for example Model 
Seeker.



CA and Deep Learning
• This is an area that has received little attention, with most focus on end-to-end learning 

(learning how to solve constraint problems).

• Transformers are a form of artificial neural network that have performed impressively on 
many tasks previously the preserve of humans, and given rise to the field of Generative 
AI, so it is natural to wonder if they can also perform CA.

• If so, they might have abilities beyond those of current
approaches...



Why Transformers?
• Transformer training is expensive, but if they can be trained to generate a constraint
model from a dataset of labelled instances, they will be able to do so very quickly: they
effectively learn how to handle an entire class of problem. Long execution times have
plagued CAmethods so this would be a valuable property.

• They might be able to handle very large biases. Most methods have only been tested
on biases containing a few tens of thousands of candidates. Recent work has handled
sizes of up to a billion candidates, but a bias containing (say) all possible all-different
global constraints on a set of 100 variables is astronomically larger. Such biases are
currently handled by making simplifying regularity assumptions, which transformers
might learn automatically.



Why Transformers?
• Transformers can handle inputs of different size (eg images with different numbers of
pixels) so they might be able to learn constraints for one problem size after being
trained on examples of another size. Very few CA methods attempt to do this, and
transformers would provide a new approach.

• Although transformers do not always generalize well, a great deal of current research
aims to improve their ability and CA might benefit from progress in this area. Eg if a
transformer could be trained to learn both planning and scheduling constraint models, it
might be able to learn constraints for planning-scheduling hybrid problems.



Why Transformers?
• Transformers succeed at related tasks such as symbolic regression: trained on a large
dataset of regression examples, they can outperform standard methods based on
genetic programming.

• Transformers form the basis of large language models (LLMs) which show signs of
generalization ability beyond what was expected (Geoff Hinton and others say they are
more than “stochastic parrots”) so they might have unexpected CA abilities. LLMs have
recently been used to generate constraint models from natural language descriptions.

• These observations are speculative, and it is not obvious whether transformers can
achieve all this, but understanding the proficiency of LLMs in logical reasoning is a hot
research area.



Our Contribution

• We devise the first methodology for training transformer models to autonomously learn SAT 
clauses from examples, which we call CNFformer.

• We form a new connection between the CP and ML communities.

• We present experimental results [TO BE ANNOUNCED]

Truth Assignments (solutions + 
non-solutions) Sampled from 

Random 3-SAT CNF
Transformer Model Generated 3-SAT CNF



Transformer Operations in SAT Learning
• !" is a transformer which interprets truth assignments as “input
language” and performs stochastic formula generation to
transform them into logical formulae, the “output language”.

• It acts as a many-to-many formula generator.

• By generating the most probable formula token for truth
assignment tokens, !" optimizes the formula generation process.

• !" represents a significant advancement, utilizing self attention
mechanisms to process sequential data more efficiently than
RNNs and LSTMs.



Transformer Operations in SAT Learning
• We define a finite set V as vocabulary for truth assignments (!") and
CNF formulae (!∅). We consider only well-formed formulae generated
from !∅ which are formulae in proper k-CNF syntax.

• Training Task: Given a vocabulary pair (!", !∅) and an i.i.d. dataset of
sequence pairs {z, w}, learn a conditional probability distribution to
estimate P(w|z) where z is a sequence of truth assignments %&, w is the
formula ø for which the set of truth assignments %& makes ø true.

• Acquisition Task: Given a set of input truth assignments z, return a
SAT formula w. '( projects the combination of X (truth assignment sub-
string) and C (Context) into Y (resulting SAT formula) with a certain
probability π which ranges between 0 and 1.



Transformer Operations in SAT Learning
• For an input sequence X = { !", !$, … , !&} the self-attention
mechanism computes matrices Q, K, and V which are learned
parameter matrices through which the attention scores are
calculated between elements. This computation reflects how much
each element of the sequence should attend to every other
element, enabling the model to capture long-range dependencies.

• In order to compensate for the lack of sequential order awareness
in parallel processing, positional encodings are added to the input
embeddings. These encodings provide information about the order
of tokens in the sequence. Each layer of the transformer () applies
self-attention, followed by a position-wise feed forward network.



Transformer Operations in SAT Learning
Total Loss Function = Cross 
Entropy Loss + Custom 
Equisatisfiable Loss
Cross Entropy Loss =                          
- !" ∑$%!

" ∑&%!' ($& log ,$&
N -> Number of examples in dataset
C -> No. of classes in LED model
($&-> Binary Indicator if class j is correct 
classification of example i
,$&->predicted prob of class i belongs to class j

Custom Equisatisfiable Loss = 
2 – Precision + (α×unsatisfied 
clause ratio in target model) –
recall + (β×unsatisfied clause 
ratio in learned model)



Results
• To be announced at the event! We aim to test the
transformer’s ability to learn out-of-distribution, eg other 3-
SAT formulae and generalization to different numbers of
variables. We are also investigating the use of fine-tuning
and transfer learning.

• However, we can present a key result: a transformer can
learn to generate small random 3-SAT models from below
the phase transition (10 variables 20 clauses) from a set of
truth assignments labelled as solutions/non-
solutions. Training is lengthy but accuracy increases
steadily, currently reaching an F1 score of 0.75



Results



Results
• We evaluate the learned formulae against the target formulae 

from a known strategy discussed in the “COUNT-CP” paper.

• Performance is measured in terms of Precision and Recall. 

• Precision defines what percentage of the learned feasible 
region is actually feasible in the target model. This is done by 
randomly sampling solutions from the learned model and 
checking them in the target model.

• Recall defines what percentage of the target feasible region is 
captured by the learned model. This is done by randomly 
sampling solutions from the target model and checking them 
in the learned model



Results

The above is calculated on test data of 100 target formulae

Precision Recall F1-Score

0.62 0.96 0.75



Conclusion • We believe that transformers will make a great 
contribution to constraint acquisition.

• Training is currently very expensive, but the field will
benefit from future progress on generative AI.



Acknowledgements
This work was conducted with the financial support of the 
Science Foundation Ireland Centre for Research Training 
in Artificial Intelligence under Grant No. 18/CRT/6223.


