AAAI 2024 The 38th Annual AAAI Conference on Artificial Intelligence Bridge Program on Constraint Programming and Machine Learning Vancouver, Canada

Chatbots & LLMs for Constraint Programming: Challenges and Opportunities

Dimos Tsouros¹ and Serdar Kadıoğlu^{2,3}

¹ Declarative Languages and AI, KU Leuven
 ² AI Center of Excellence, Fidelity Investments
 ³ Department of Computer Science, Brown University

Constraint Programming

Constraint Programming enjoys a wide range of applications

Over the years, dramatical speed-ups enabled by theoretical and practical advances

□ The overall process of modeling and solving problems remained the same for decades

Towards the Holy Grail

□ Can we achieve the Holy Grail with Large Language Models?

LLMs still lack reasoning for solving combinatorial problems, even on simple puzzles

U We already know how to solve such problems! The bottleneck is to model them

Holy Grail 2.0

□ Holy Grail 2.0: From natural language to constraint models

Leverage LLM capabilities to model problems and then turn to powerful solving techniques

Tsouros et. al., Holy Grail 2.0: From Natural Language to Constraint Models. PTHG @ CP'23

Automated Modelling Assistant

- Decompose into necessary building blocks
- LLMs and other technologies can be used in each block

Conversational Constraint Solving

□ What if the user needs **explanation** for the results?

- Problem is unsatisfiable
- $\circ~$ User not satisfied with the solution

□ What if additional constraints need to be added?

○ Constraint acquisition

Recent NL4OPT Challenge

- □ NL4OPT was initially proposed @ EMNLP'22
- □ Two subtasks were considered: NER and Formulate

□ The first dataset for these problems was introduced, used in NL4OPT Challenge @ NeurIPS'22

Ramamonjison et al., Augmenting Operations Research with Auto-Formulation of Optimization Models from Problem Descriptions, EMNLP 2022 Ramamonjison et al., NL4Opt Competition: Formulating Optimization Problems Based on Their Natural Language Descriptions, NeurIPS 2022

Demo: Ner4Opt & ChatOpt

Ner4Opt Hugging Face Spaces <u>https://huggingface.co/spaces/skadio/Ner4Opt</u>

Modeling Assistant Demo https://chatopt.cs.kuleuven.be **ChatOpt deep-dive**

Ner4Opt deep-dive

What's next?

ChatOpt

What's under the hood?

Ongoing research

- $\,\circ\,$ Large Language Models used for each step
- In-context Learning and Chain-of-thought used

□ Current state in the beta version:

- No REL step yet, experimenting with NER
- Still not there for the goal of conversational constraint solving

ChatOpt: LLMs as CP modellers

What's under the hood?

□ In-Context Learning

Dynamically selecting the examples (shots) based on the current problem:

- Random selection
- $\circ\,$ RAG:
 - Similarity selection: Select the most similar ones (cosine similarity)
 - Maximal Marginal Relevance (MMR): Balance diversity and relevance in example selection

ChatOpt: LLMs as CP modellers

In-Context Learning

Model the following problem:

A retired professor wants to invest up to \$50000 in the airline and railway industries. Each dollar invested in the airline industry yields a \$0.30 profit and each dollar invested in the railway industry yields a \$0.10 profit. A minimum of \$10000 must be invested in the railway industry and at least 25% of all money invested must be in the airline industry. Formulate a LP that can be used to maximize the professor's profit.

Model:

Variables: Amount invested in the airline industry: Airline Amount invested in the railway industry: Railway

Constraints:

Airline + Railway <= 50000 Railway >= 10000 Airline >= 0.25 * (Airline + Railway)

Objective:

Maximize: 0.30 * Airline + 0.10 * Railway

Model the following problem:

<Problem Description>

Model:

ChatOpt: LLMs as CP modellers

Chain-of-thought

□ Augment the description of the solution to the given problem(s) with explanation

□ That is, using chain-of-thought

Model the following problem:

A retired professor wants to invest up to \$50000 in the airline and railway industries. Each dollar invested in the airline industry yields a \$0.30 profit and each dollar invested in the railway industry yields a \$0.10 profit. A minimum of \$10000 must be invested in the railway industry and at least 25% of all money invested must be in the airline industry. Formulate a LP that can be used to maximize the professor's profit. Model: Variables: The goal is to invest dollars in the airline and railway industries. So the variables are the followina Amount invested in the airline industry: Airline Amount invested in the railway industry: Railway Constraints: Total investment should not exceed \$50000. Dollars are invested in both the airline industry and the railway industry: Airline + Railway <= 50000 We must invest a minimum of \$10000 in the railway industry: Railway >= 10000 At least 25% of all money invested must be in the airline industry: Airline >= 0.25 * (Airline + Railway) Objective: Maximize profit. Each dollar invested in the airline industry yields a \$0.30 profit and each dollar invested in the railway industry yields a \$0.10 profit: 0.30 * Airline + 0.10 * Railway

Model the following problem:

<Problem Description>

Model:

ChatOpt: Step – I

Produce the pseudo-model

You are designing an office space with two types of desks: long desks and short desks. You can spend at most \$2000. Long desks cost \$300, take up 10 square feet of space, and seat 6 employees. Short desks cost \$100, take up 4 square feet of space, and seat 2 employees. The office can have at most 200 square feet of desks. How many of each desk should you buy in order to maximize the seating availability?

З

Variables:

- Number of long desks: Long
- Number of short desks: Short

Objective: Maximize seating availability: 6 * Long + 2 * Short

Constraints:

- Total cost should not exceed \$2000: 300 * Long + 100 * Short <= 2000
- Total space taken by desks should not exceed 200 square feet: 10 * Long + 4 * Short <= 200

Pseudo Model

Generate An Executable CPMpy Model **D**

ChatOpt: Step – II

Generate CPMpy code

```
from cpmpy import *
# Variables
Long, Short = intvar(0, 2000), intvar(0, 2000) # Adjusting upper bounds
# Objective
objective = 6 * \text{Long} + 2 * \text{Short}
# Constraints
m = Model([
    300 * Long + 100 * Short <= 2000, # Cost constraint
   10 * Long + 4 * Short <= 200 # Space constraint
])
# Maximizing seating availability
m.maximize(objective)
# Solve the model
if m.solve():
    print(f"Number of long desks: {Long.value()}")
    print(f"Number of short desks: {Short.value()}")
    print(f"Total seating availability: {6 * Long.value() + 2 * Short.value()}")
```

https://cpmpy.readthedocs.io

ChatOpt: Step – III

Execute the code and get the solution

Initial Results

□ Initial results on 2 CP datasets:

COPs: NL4Opt <u>https://github.com/nl4opt/nl4opt-competition/tree/main/generation_data</u>

• CSPs: Logic Grid Puzzles <u>https://github.com/jelgun/LGPSolver/tree/master/data</u>

□ Evaluating accuracy on 3 different levels:

- \circ Constraint-level
- \circ Problem-level
- $\circ~$ Solution-level

Initial Results on NL4OPT

Using gpt-3.5-turbo-1106 to generate pseudo-models

Ex. Selection	# Shots	Acc (Prob) %	Acc (Cons) %
Static	1	86.1	94.0
Similarity	1	84.7	94.3
Static	4	85.1	92.1
Similarity	4	91.7	96.8
MMR	4	92.0	96.5
MMR	8	92.7	97.3

Some observations:

- Adding in-context examples will be efficient if they are relevant with the current problem
- $\circ~$ No need to add more than 4

Initial Results on LGP

Using Mixtral-8x7B-v0.1 to generate CPMpy code

# Shots	Ex. Selection	Acc (Solution) %
1	Similarity	72.0
2	MMR	77.0
4	MMR	80.0
8	MMR	87.0

Some observations:

- Still some way to go to achieve higher accuracy
- $\circ~$ Difficulty to model such problems due to the combinatorial nature

ChatOpt deep-dive

Ner4Opt deep-dive

What's next?

Ner vs. Ner4Opt

Challenges of Optimization Context

□ NER for information retrieval, question answering, and machine translation

□ Multi-sentence word problem with high-level of compositionality, ambiguity, variability

□ Ner4Opt must be **domain agnostic** and generalize to new instances and applications

Extremely limited training data. Even human annotation requires expertise. Must operate on low-resource regime

Chinchor et. al.: Message Understanding-7 named entity task definition, MUC, 1998

Solution Components

Features – Models – Data Centric Approach

1 Feature and L	are Extraction, Engineering, earning	Classical and semantic models to extract features for tokens while leveraging optimization context
2 Cond Neur	itional Random Field al Networks	Linear chain conditional random field or fully connected network as the modeling component
B Data Fine	Augmentation Tuning LLMs	Augment the data set and fine-tune pre-trained large- language models

Dakle et. al., Ner4Opt: Named Entity Recognition for Optimization Modelling from Natural Language, CPAIOR'23

Classical NLP: CRF applied to Ner4Opt

Input \rightarrow Tokens \rightarrow Feature Extraction \rightarrow CRF \rightarrow OBIE Tags

- In NLP, feature extraction function explores linguistic properties of a token or a group of tokens
- Grammatical features: part-of-speech (pos) tagging, dependency parsing, etc.
- Morphological features: prefix, suffix and word shape, capitalized, numeric, etc.

Ratinov, L., Roth, D.: Design challenges and misconceptions in NER, CoNLL, 2009

Feature Engineering for Optimization

Regular Automaton for Extracting the Objective Name, Gazetteer & Syntactic Features

Modern NLP

Feature Engineering to Feature Learning

- □ In practice, Ner4Opt problems require modeling long-range text dependencies.
- When operating on the long-range, recurrent architectures are known to struggle with vanishing and exploding gradients.
- □ As a remedy, most recent works rely on the Transformers architecture that solve the long-range problem by replacing the recurrent component with the attention mechanism.
- There are many variants of this architecture, and here, we consider distinct flavors based on RoBERTa to generate the feature embeddings.

Formulate Ner4Opt as Token Classification

Use BERT-style models as encoders

- **Token classification** problem with encoders
- □ Roberta embeddings with **1024** dimensions
- □ A fully-connected layer of size 1024 learns to map token level embeddings into named-entity-labels
- □ Followed by softmax activation function to output dimension of 1 x 13
- □ Minimize training loss with **cross-entropy loss**

Fine-Tuning with Optimization Corpora

Improving LLMs for domain-specific Ner4Opt

LLMs, such as BERT, RoBERTa, GPT, are pretrained on **non-domain specific text** for good downstream performance on language-oriented tasks

- For domain specific tasks, performance can be improved using domain specific corpora to fine-tune pretrained models
- Convex optimization, linear programming, game theory books, course notes on optimization from Open Optimization Platform
- Our work is the first approach to fine-tune with optimization corpora using Masked Language Modelling with 15% words are random, replace 80% with MAST token, 10% with random, and the remaining 10% with the original word

Howard J., Ruder, S.: Universal language model fine-tuning for text classification, 2018

Comparisons

Classical based on grammatical and morphological features, plus with hand-crafted gazetteer, syntactic, and contextual features. The state-of-the-art method* based on XLM-Roberta Base and its Large variant Our optimization fined tuned XML-RL+ and Hybrid method with feature engineering and learning

* Ramamonjison et. al. Augmenting operations research with auto-formulation of optimization models from problem descriptions, EMNLP, 2022

Lexical, Semantic and Hybrid Solutions

Method	CONST_DIR		LIM	LIMIT		OBJ_DIR ()BJ_NAME		PARAM		Ave	Average	
METHOD	\mathcal{P}	${\cal R}$	\mathcal{P}	${\cal R}$	\mathcal{P}	\mathcal{R}	\mathcal{P}	\mathcal{R}	\mathcal{P}	\mathcal{R}	P 1	R Mic	ro F1	
CLASSICAL	0.956	0.854	0.904	0.954	0.979	0.929	0.649	0.353	0.958	0.916	0.795	0.714	0.816	
CLASSICAL+	0.960	0.858	0.931	0.942	0.990	0.970	0.726	0.544	0.953	0.935	0.823	0.787	0.853	
Хім-Rв [51]	0.887	0.897	0.965	0.950	0.949	0.999	0.617	0.469	0.960	0.969	0.909	0.932	0.888	
Xlm-Rl	0.930	0.897	0.979	0.938	0.979	0.989	0.606	0.512	0.963	0.985	0.899	0.938	0.893	
Xlm-Rl+	0.901	0.897	0.987	0.953	0.989	0.999	0.665	0.583	0.971	0.989	0.918	0.946	0.907	
Hybrid	0.946	0.890	0.980	0.942	0.990	1.000	0.730	0.668	0.957	0.983	0.935	0.953	0.919	

- Our Hybrid achieves the best performance 0.919
- Best performance in most / hardest classes

Why not just use ChatGPT-4.0?

Method	CONST_DIR		LIMIT		OBJ_DIR		OBJ_NAME		PARAM		VAR		Average
	\mathcal{P}	${\cal R}$	\mathcal{P}	\mathcal{R}	Micro F1								
Zero-shot	0.500	0.378	0.477	0.529	0.728	0.758	0.483	0.201	0.372	0.404	0.733	0.778	0.546
ZERO+RULES	0.765	0.602	0.370	0.440	0.680	0.707	0.332	0.244	0.299	0.280	0.731	0.845	0.545
Zero+Lists	0.861	0.657	0.583	0.571	0.762	0.778	0.427	0.322	0.435	0.458	0.676	0.708	0.588
Few-shot-2	0.281	0.283	0.865	0.915	0.960	0.980	0.596	0.350	0.913	0.895	0.863	0.899	0.768
Few-shot-3	0.494	0.520	0.890	0.938	0.970	0.990	0.571	0.339	0.949	0.931	0.860	0.912	0.807
Few-shot-5	0.611	0.618	0.980	0.950	0.990	1.000	0.626	0.403	0.930	0.971	0.862	0.914	0.838
Hybrid	0.946	0.890	0.980	0.942	0.990	1.000	0.730	0.668	0.957	0.983	0.935	0.953	0.919

- Even with few-shot learning, the LLM performance falls short
- This again highlights the inherent complexity of Ner4Opt

ChatOpt deep-dive

Ner4Opt deep-dive

What's next?

What's Next?

Future directions

- □ Rich literature for integrating ML + Opt but only recent studies for NLP + Opt
- □ NLP and LLMs show **potential** to be used to assist the user in modeling
- □ Initial results with promise but also directions to improve
- Decomposition into different modeling blocks seems to enhance the performance

What's Next?

Future directions

- **Consider interactivity and user input**
- □ Towards conversational constraint solving

References

Research & Open-Source Software

□ [PTHG@CP'23] Holy Grail 2.0: From Natural Language to Constraint Models

- □ [NeurIPS'22, CPAIOR'23] Ner40pt
- Ner40pt Demo
- ChatOpt Demo
- □ [NeurIPS'22] NL40pt Challenge
- □ Logic Grid Puzzles
- CPMpy: CP and Modeling in Python

https://github.com/skadio/ner4opt (pip install ner4opt) https://huggingface.co/spaces/skadio/Ner4Opt https://chatopt.cs.kuleuven.be https://nl4opt.github.io https://github.com/jelgun/LGPSolver https://cpmpy.readthedocs.io

