
Chatbots & LLMs for Constraint Programming:
Challenges and Opportunities

Dimos Tsouros1 and Serdar Kadıoğlu2,3

1 Declarative Languages and AI, KU Leuven
2 AI Center of Excellence, Fidelity Investments
3 Department of Computer Science, Brown University

A A A I 2 0 2 4
T h e 3 8 t h A n n u a l A A A I C o n f e r e n c e o n A r t i f i c i a l I n t e l l i g e n c e

B r i d g e P r o g r a m o n C o n s t r a i n t P r o g r a m m i n g a n d M a c h i n e L e a r n i n g
V a n c o u v e r , C a n a d a

Introduction
Constraint Programming

❑ Constraint Programming enjoys a wide range of applications

❑ Over the years, dramatical speed-ups enabled by theoretical and practical advances

❑ The overall process of modeling and solving problems remained the same for decades

𝑴𝒐𝒅𝒆𝒍 𝑹𝒖𝒏

Introduction
Towards the Holy Grail

❑ Can we achieve the Holy Grail with Large Language Models?

❑ LLMs still lack reasoning for solving combinatorial problems, even on simple puzzles

❑We already know how to solve such problems! The bottleneck is to model them

Problem

 Description

Solution

Introduction
Holy Grail 2.0

❑ Holy Grail 2.0: From natural language to constraint models

❑ Leverage LLM capabilities to model problems and then turn to powerful solving techniques

Model
Problem

 Description

Solver
Solution

Formulate
Problem

 Description

Solver
Solution

Translate

Tsouros et. al., Holy Grail 2.0: From Natural Language to Constraint Models. PTHG @ CP’23

Introduction
Automated Modelling Assistant

❑ Decompose into necessary building blocks

❑ LLMs and other technologies can be used in each block

Formulate

Problem

 Description

Solver
Solution

Translate

NER REL

Introduction
Conversational Constraint Solving

❑What if the user needs explanation for the results?

o Problem is unsatisfiable

o User not satisfied with the solution

❑What if additional constraints need to be added?

o Constraint acquisition

Formulate

Problem

 Description

Solver
Solution

Translate

NER REL

Refine
Model

Compile
Run

Inspect

MUS

Verification

Introduction
Recent NL4OPT Challenge

❑ NL4OPT was initially proposed @ EMNLP’22

❑ Two subtasks were considered: NER and Formulate

❑ The first dataset for these problems was introduced, used in NL4OPT Challenge @ NeurIPS’22

Ramamonjison et al., Augmenting Operations Research with Auto-Formulation of Optimization Models from Problem Descriptions, EMNLP 2022
Ramamonjison et al., NL4Opt Competition: Formulating Optimization Problems Based on Their Natural Language Descriptions, NeurIPS 2022

Demo: Ner4Opt & ChatOpt

Ner4Opt Hugging Face Spaces
https://huggingface.co/spaces/skadio/Ner4Opt

Modeling Assistant Demo
https://chatopt.cs.kuleuven.be

https://huggingface.co/spaces/skadio/Ner4Opt
https://chatopt.cs.kuleuven.be/

ChatOpt deep-dive

Ner4Opt deep-dive

What’s next?

ChatOpt
What’s under the hood?

❑ Ongoing research

o Large Language Models used for each step

o In-context Learning and Chain-of-thought used

❑ Current state in the beta version:

o No REL step yet, experimenting with NER

o Still not there for the goal of conversational constraint solving

ChatOpt: LLMs as CP modellers
What’s under the hood?

❑ In-Context Learning

❑ Dynamically selecting the examples (shots) based on the current problem:

o Random selection

o RAG:

o Similarity selection: Select the most similar ones (cosine similarity)

o Maximal Marginal Relevance (MMR): Balance diversity and relevance in example selection

ChatOpt: LLMs as CP modellers
In-Context Learning

ChatOpt: LLMs as CP modellers
Chain-of-thought

❑ Augment the description of the solution to the given problem(s) with explanation

❑ That is, using chain-of-thought

ChatOpt: Step – I
Produce the pseudo-model

ChatOpt: Step – II
Generate CPMpy code

https://cpmpy.readthedocs.io

https://cpmpy.readthedocs.io/

ChatOpt: Step – III
Execute the code and get the solution

Experiments
Initial Results

❑ Initial results on 2 CP datasets:

o COPs: NL4Opt https://github.com/nl4opt/nl4opt-competition/tree/main/generation_data

o CSPs: Logic Grid Puzzles https://github.com/jelgun/LGPSolver/tree/master/data

❑ Evaluating accuracy on 3 different levels:

o Constraint-level

o Problem-level

o Solution-level

https://github.com/nl4opt/nl4opt-competition/tree/main/generation_data
https://github.com/jelgun/LGPSolver/tree/master/data

Experiments
Initial Results on NL4OPT

❑ Using gpt-3.5-turbo-1106 to generate pseudo-models

Some observations:

o Adding in-context examples will be efficient if they are relevant with the current problem

o No need to add more than 4

Ex. Selection # Shots Acc (Prob) % Acc (Cons) %

Static 1 86.1 94.0

Similarity 1 84.7 94.3

Static 4 85.1 92.1

Similarity 4 91.7 96.8

MMR 4 92.0 96.5

MMR 8 92.7 97.3

Experiments
Initial Results on LGP

❑ Using Mixtral-8x7B-v0.1 to generate CPMpy code

Some observations:

o Still some way to go to achieve higher accuracy

o Difficulty to model such problems due to the combinatorial nature

Shots Ex. Selection Acc (Solution) %

1 Similarity 72.0

2 MMR 77.0

4 MMR 80.0

8 MMR 87.0

ChatOpt deep-dive

Ner4Opt deep-dive

What’s next?

Ner vs. Ner4Opt
Challenges of Optimization Context

❑ NER for information retrieval, question answering, and machine translation

❑ Multi-sentence word problem with high-level of compositionality, ambiguity, variability

❑ Ner4Opt must be domain agnostic and generalize to new instances and applications

❑ Extremely limited training data. Even human annotation requires expertise.
Must operate on low-resource regime

Chinchor et. al.: Message Understanding-7 named entity task definition, MUC, 1998

Solution Components
Features – Models – Data Centric Approach

Feature Extraction, Engineering,
and Learning

Classical and semantic models to extract features for
tokens while leveraging optimization context

Conditional Random Field
Neural Networks

Linear chain conditional random field or fully connected
network as the modeling component

Data Augmentation
Fine Tuning LLMs

Augment the data set and fine-tune pre-trained large-
language models

Dakle et. al., Ner4Opt: Named Entity Recognition for Optimization Modelling from Natural Language, CPAIOR'23

Classical NLP: CRF applied to Ner4Opt
Input → Tokens → Feature Extraction → CRF → OBIE Tags

❑ In NLP, feature extraction function
explores linguistic properties of a token
or a group of tokens

❑ Grammatical features: part-of-speech
(pos) tagging, dependency parsing, etc.

❑ Morphological features: prefix, suffix
and word shape, capitalized, numeric,
etc.

Ratinov, L., Roth, D.: Design challenges and misconceptions in NER, CoNLL, 2009

Feature Engineering for Optimization
Regular Automaton for Extracting the Objective Name, Gazetteer & Syntactic Features

profit SUBJ to be maximized OBJ_DIR

maximize OBJ_DIR the total monthly ADJP profit NOUN

Modern NLP
Feature Engineering to Feature Learning

❑ In practice, Ner4Opt problems require modeling long-range text dependencies.

❑ When operating on the long-range, recurrent architectures are known to struggle with vanishing and
exploding gradients.

❑ As a remedy, most recent works rely on the Transformers architecture that solve the long-range
problem by replacing the recurrent component with the attention mechanism.

❑ There are many variants of this architecture, and here, we consider distinct flavors based on RoBERTa to
generate the feature embeddings.

Vaswani et. al.: Attention is all you need, NeurIPS 2017
Liu et. al.: Roberta: A robustly optimized bert pretraining approach, 2019

Formulate Ner4Opt as Token Classification
Use BERT-style models as encoders

❑ Token classification problem with encoders

❑ Roberta embeddings with 1024 dimensions

❑ A fully-connected layer of size 1024 learns to map token
level embeddings into named-entity-labels

❑ Followed by softmax activation function to output
dimension of 1 x 13

❑ Minimize training loss with cross-entropy loss

Fine-Tuning with Optimization Corpora
Improving LLMs for domain-specific Ner4Opt

❑ LLMs, such as BERT, RoBERTa, GPT, are pretrained on non-domain specific text for good downstream
performance on language-oriented tasks

❑ For domain specific tasks, performance can be improved using domain specific corpora to fine-tune pre-
trained models

❑ Convex optimization, linear programming, game theory books, course notes on optimization from Open
Optimization Platform

❑ Our work is the first approach to fine-tune with optimization corpora using Masked Language Modelling
with 15% words are random, replace 80% with MAST token, 10% with random, and the remaining 10% with
the original word

Howard J., Ruder, S.: Universal language model fine-tuning for text classification, 2018

Experiments
Comparisons

Classical
Classical+

XLM-RB*
XLM-RL

XLM-RL+
Hybrid

Classical based on grammatical
and morphological features, plus
with hand-crafted gazetteer,
syntactic, and contextual
features.

The state-of-the-art method*
based on XLM-Roberta Base and
its Large variant

Our optimization fined tuned
XML-RL+ and
Hybrid method with feature
engineering and learning

* Ramamonjison et. al. Augmenting operations research with auto-formulation of optimization models from problem descriptions,
EMNLP, 2022

Experiments
Lexical, Semantic and Hybrid Solutions

• Our Hybrid achieves the best performance 0.919

• Best performance in most / hardest classes

Experiments
Why not just use ChatGPT-4.0?

• Even with few-shot learning, the LLM performance falls short

• This again highlights the inherent complexity of Ner4Opt

ChatOpt deep-dive

Ner4Opt deep-dive

What’s next?

What’s Next?
Future directions

❑ Rich literature for integrating ML + Opt but only recent studies for NLP + Opt

❑ NLP and LLMs show potential to be used to assist the user in modeling

❑ Initial results with promise but also directions to improve

❑ Decomposition into different modeling blocks seems to enhance the performance

❑ Beyond pure modeling exercise

What’s Next?
Future directions

❑ Consider interactivity and user input

❑ Towards conversational constraint solving

References

❑ [PTHG@CP’23] Holy Grail 2.0: From Natural Language to Constraint Models

❑ [NeurIPS’22, CPAIOR’23] Ner4Opt https://github.com/skadio/ner4opt (pip install ner4opt)

❑ Ner4Opt Demo https://huggingface.co/spaces/skadio/Ner4Opt

❑ ChatOpt Demo https://chatopt.cs.kuleuven.be

❑ [NeurIPS’22] NL4Opt Challenge https://nl4opt.github.io

❑ Logic Grid Puzzles https://github.com/jelgun/LGPSolver

❑ CPMpy: CP and Modeling in Python https://cpmpy.readthedocs.io

Research & Open-Source Software

https://github.com/skadio/ner4opt
https://huggingface.co/spaces/skadio/Ner4Opt
https://chatopt.cs.kuleuven.be/
https://nl4opt.github.io/
https://github.com/jelgun/LGPSolver/tree/master/data
https://cpmpy.readthedocs.io/

	Default Section
	Slide 1: Chatbots & LLMs for Constraint Programming: Challenges and Opportunities
	Slide 2: Introduction
	Slide 3: Introduction
	Slide 4: Introduction
	Slide 5: Introduction
	Slide 6: Introduction
	Slide 7: Introduction

	Demo
	Slide 8: Demo: Ner4Opt & ChatOpt

	ChatOpt
	Slide 9
	Slide 10: ChatOpt
	Slide 11: ChatOpt: LLMs as CP modellers
	Slide 12: ChatOpt: LLMs as CP modellers
	Slide 13: ChatOpt: LLMs as CP modellers
	Slide 14: ChatOpt: Step – I
	Slide 15: ChatOpt: Step – II
	Slide 16: ChatOpt: Step – III
	Slide 17: Experiments
	Slide 18: Experiments
	Slide 19: Experiments

	Ner4Opt
	Slide 20
	Slide 21: Ner vs. Ner4Opt
	Slide 22: Solution Components
	Slide 23: Classical NLP: CRF applied to Ner4Opt
	Slide 24: Feature Engineering for Optimization
	Slide 25: Modern NLP
	Slide 26: Formulate Ner4Opt as Token Classification
	Slide 27: Fine-Tuning with Optimization Corpora
	Slide 28: Experiments
	Slide 29: Experiments
	Slide 30: Experiments

	What's Next?
	Slide 31
	Slide 32: What’s Next?
	Slide 33: What’s Next?
	Slide 34: References
	Slide 35

