Vertical Reasoning Enhanced Learning, Generation and Scientific Discovery

Yexiang Xue

Department of Computer Science Purdue University yexiang@purdue.edu

Intelligent Systems Integrate Learning and Reasoning

Knowledge Reaction Perception Learning **Machine learning:**

- **Bottom-up:** Learn predictive models from data
- **Challenging** in • providing formal guarantees

- Automated reasoning:
 - **Top-down:** Build models from problem description
 - Rigid models: problem formulation must be agreed a-priori
 - Difficult to adapt to data distributions **ction**

May violate constraints in rare and unseen situations

Intelligent Systems Integrate Learning and Reasoning



Generalist Systems; Think Fast and Slow

Input Specifications:

- Add a blue microwave right of the oven
- Add a green toaster left of the oven and below the sink

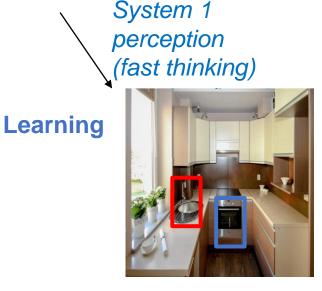
Reasoning & **learning** are in charge of different cognitive systems.

Need both for building a generalist AI.

THINKING, FASTAND SLOW DANIEL

K A H N E M A N

WINNER OF THE NOBEL PRIZE IN ECONOMICS



Reasoning + Learning

System 2 planning & generation (slow thinking)

Integrate Reasoning into Design Generation

Existing Kitchen Env:

Input Specifications:

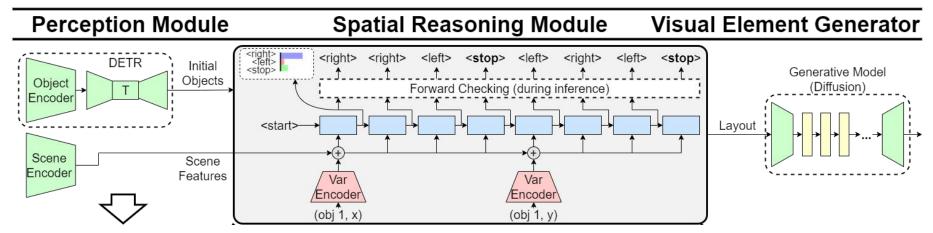
- Add a blue microwave right of the oven
- Add a green toaster left of the oven and below the sink

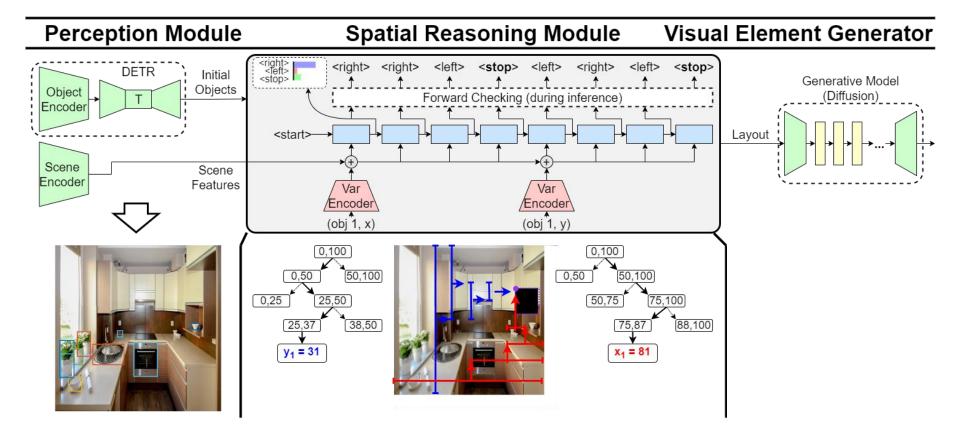
(stated in propositional logic)

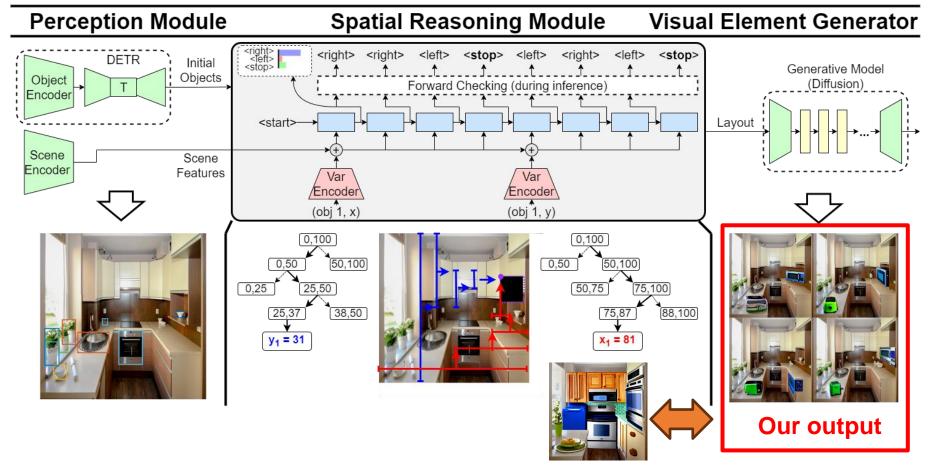
- Good designs need to meet industry standards and user needs, while capturing subtle aspects such as aesthetics and convenience.
- Complete constraint reasoning approach: satisfy design specifications, but cannot capture visual information. In fact, such info cannot be encoded in objective functions.
- **Complete ML approach**: generate beautiful designs, but cannot meet specifications.

Baseline (Stable Diffusion)

Ours (CORE)

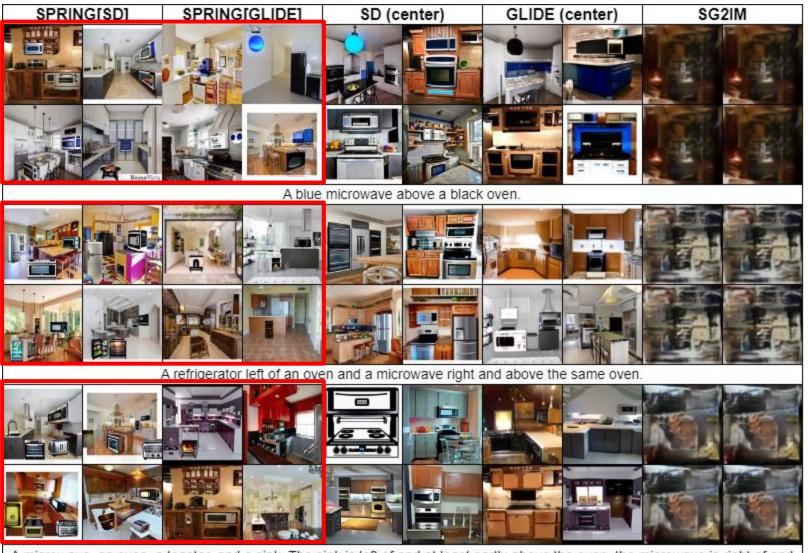






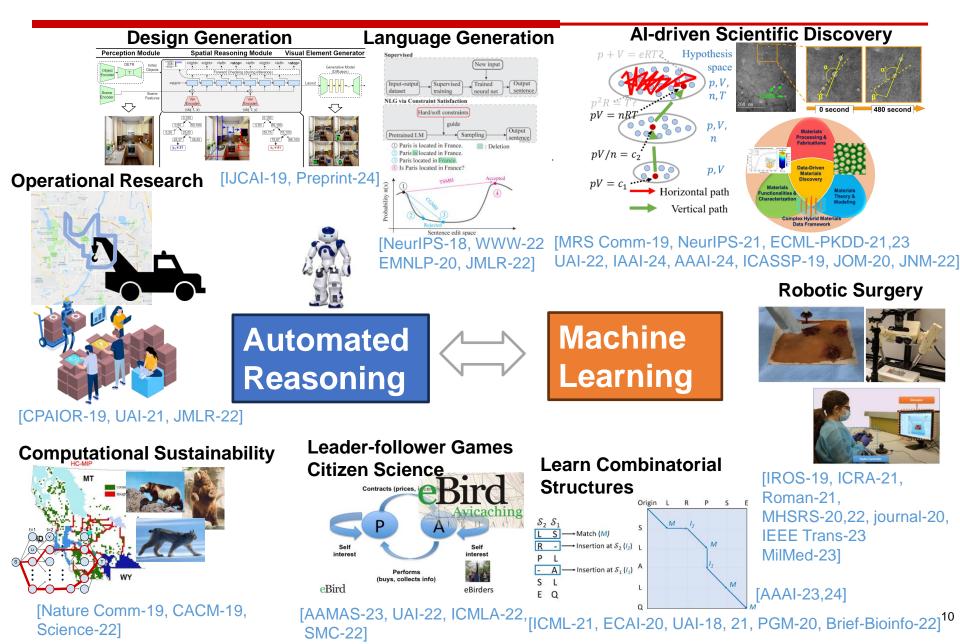
Baseline (Stable Diffusion)

CORE for Design Generation



A microwave, an oven, a toaster, and a sink. The sink is left of and at least partly above the oven, the microwave is right of and above the oven, and the toaster is below the microwave.

Fruitful Expedition on Integrating Reasoning with Learning



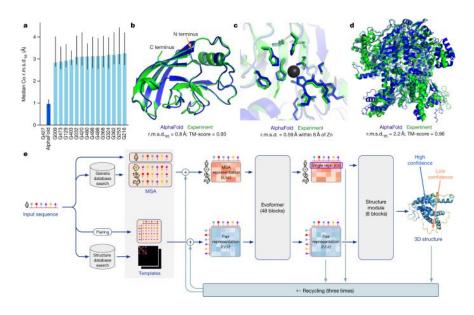
- Introduction
- Vertical Reasoning Enhanced Neural Generation
- Vertical Reasoning Driven Scientific Discovery
- Vertical Reasoning Solving Satisfiability Modulo Counting (SMC) Integrating Symbolic & Statistical AI with Provable Guarantees
- Conclusion

- Introduction \checkmark
- Vertical Reasoning Driven Scientific Discovery
- Vertical Reasoning Solving Satisfiability Modulo Counting (SMC) Integrating Symbolic & Statistical AI with Provable Guarantees
- Conclusion

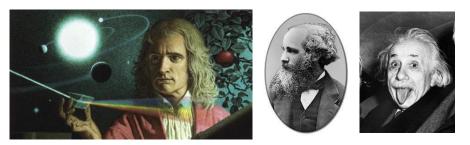
AI-driven Scientific Discovery (Learning) Needs Reasoning

• Exciting progress in deep learning

Especially in science domains [AlphaFold]

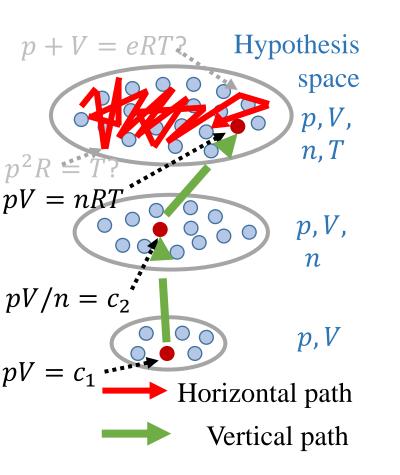


• Human learning (discovery) is better!



- Active exploration with a purpose
- Learn from an incredibly small set of "surprising" samples
- Interpretable, elegant models & equations

Vertical vs. Horizontal Discovery



- What can AI learn from human scientists?
- Symbolic regression: learning a symbolic expression from data
 - A good benchmark mimicking scientific discovery process.
- State-of-the-art solvers follow horizontal paths
 - Can be challenging because of the exponential size of the hypothesis space.
- We propose: vertical paths also scientists' approach!
 - Search in reduced spaces are much easier!
 - Can supercharge Al-driven scientific discovery.

X ₁	X2	X ₃	Y		
2.5	1.0	9.5	12		
3.0	-1.0	4.0	1		
1.6	3.5	5.2	10.8		
1.8	1.0	3.2	5		
7.1	8.6	3.8	64.9		
1.7	1.0	2.3	4		
2.5	2.6	3.1	9.6		
8.9	1.1	2.0	11.8		
4.2	-1.0	2.2	-2		
5.8	1.0	7.2	13		
1.6	5.7	1.2	10.3		
9.7	-1.0	1.7	-8		

- Learning a symbolic expression from data
 - A good benchmark mimicking scientific discovery process.
- Incredibly difficult because of the large search space of all possible expressions.
- Can you guess which equation $y = f(x_1, x_2, x_3)$ generates the data shown in the left table?

X ₁	Χ ₂	X ₃	Y
2.5	1.0		
1.8	1.0	3.2	5
1.7	1.0	2.3	4
5.8	1.0	7.2	13

- Learning a symbolic expression from data
 - A good benchmark mimicking scientific discovery process.
- Incredibly difficult because of the large search space of all possible expressions.
- Can you guess which equation $y = f(x_1, x_2, x_3)$ generates the data shown in the left table?
- How about if I only ask you to look into these rows?

$$y = x_1 + x_3?$$

X ₁	X2	X ₃	Y
3.0	-1.0	4.0	1
4.2	-1.0	2.2	-2
9.7	-1.0	1.7	-8

- Learning a symbolic expression from data
 - A good benchmark mimicking scientific discovery process.
- Incredibly difficult because of the large search space of all possible expressions.
- Can you guess which equation $y = f(x_1, x_2, x_3)$ generates the data shown in the left table?
- How about if I only ask you to look into these rows?

$$y = x_1 + x_3?$$

How about these rows?

$$y = -x_1 + x_3?$$

Red and blue data are two control variable experiment trials in reduced hypothesis spaces (X₂ controlled)! *Vertical discovery simplify* symbolic regression!

X ₁	X2	X ₃	Y	
2.5	1.0	9.5	12	
3.0	-1.0	4.0	1	
1.8	1.0	3.2	5	
1.7	1.0	2.3	4	
4.2	-1.0	2.2	-2	
5.8	1.0	7.2	13	
9.7	-1.0	1.7	-8	

- Learning a symbolic expression from data
 - A good benchmark mimicking scientific discovery process.
- Incredibly difficult because of the large search space of all possible expressions.
- Can you guess which equation $y = f(x_1, x_2, x_3)$ generates the data shown in the left table?
- How about if I only ask you to look into these rows?

$$y = x_1 + x_3$$
?

• How about these rows?

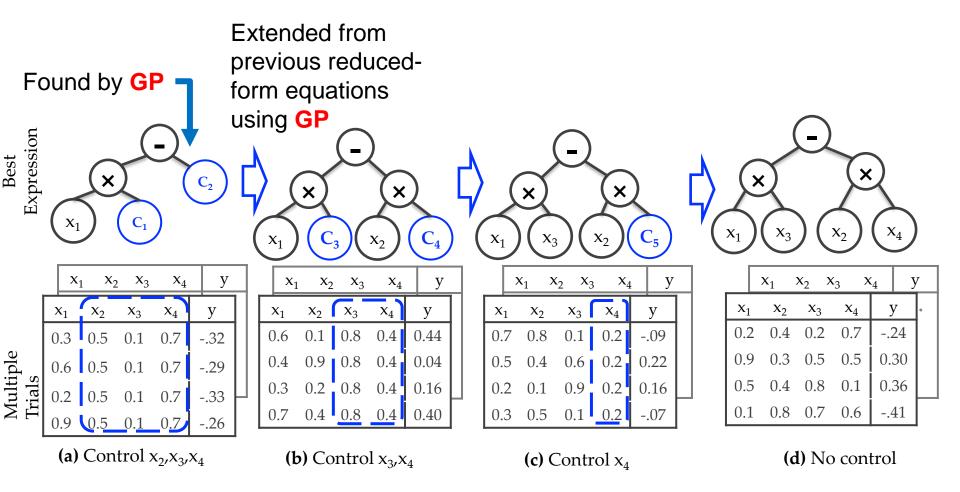
$$y = -x_1 + x_3?$$

• Maybe the equation is:

$$y = x_2 x_1 + x_3?$$

INDEED!

Control Variable Genetic Programming (CVGP)



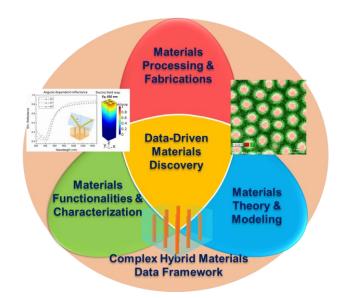
Experiment Results

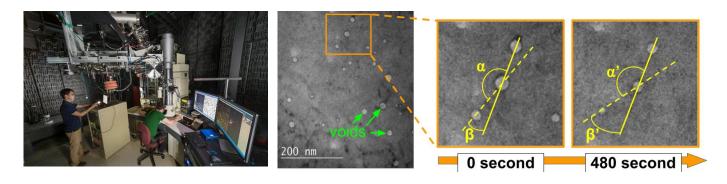
	Dataset	CVGP (ours)		GP		DSR		PQT		VPG		GPMeld	
Ops	configs	50%	75%	50%	75%	50%	75%	50%	75%	50%	75%	50%	75%
	(2,1,1)	0.198	0.490	0.024	0.053	0.032	3.048	0.029	0.953	0.041	0.678	0.387	22.806
	(4,4,6)	0.036	0.088	0.038	0.108	1.163	3.714	1.016	1.122	1.087	1.275	1.058	1.374
	(5,5,5)	0.076	0.126	0.075	0.102	1.028	2.270	1.983	4.637	1.075	2.811	1.479	2.855
inv	(5,5,8)	0.061	0.118	0.121	0.186	1.004	1.013	1.005	1.006	1.002	1.009	1.108	2.399
	(6,6,8)	0.098	0.144	0.104	0.167	1.006	1.027	1.006	1.020	1.009	1.066	1.035	2.671
	(6,6,10)	0.055	0.097	0.074	0.132	1.003	1.009	1.005	1.008	1.004	1.015	1.021	1.126
	(3,2,2)	0.098	0.165	0.108	0.425	0.350	0.713	0.351	1.831	0.439	0.581	0.102	0.597
	(4,4,6)	0.078	0.121	0.120	0.305	7.056	16.321	5.093	19.429	2.458	13.762	2.225	3.754
\sin ,	(5,5,5)	0.067	0.230	0.091	0.313	32.45	234.31	36.797	229.529	14.435	46.191	28.440	421.63
\cos	(5,5,8)	0.113	0.207	0.119	0.388	195.22	573.33	449.83	565.69	206.06	629.41	363.79	666.57
	(6,6,8)	0.170	0.481	0.186	0.727	1.752	3.824	4.887	15.248	2.396	7.051	1.478	6.271
	(6,6,10)	0.161	0.251	0.312	0.342	11.678	26.941	5.667	24.042	7.398	25.156	11.513	28.439
	(3,2,2)	0.049	0.113	0.023	0.166	0.663	2.773	1.002	1.992	0.969	1.310	0.413	2.510
	(4,4,6)	0.141	0.220	0.238	0.662	1.031	1.051	1.297	1.463	1.051	1.774	1.093	1.769
\sin ,	(5,5,5)	0.157	0.438	0.195	0.337	1.098	3.617	1.018	5.296	1.012	1.27	1.036	3.617
cos,	(5,5,8)	0.122	0.153	0.166	0.186	1.009	1.103	1.017	1.429	1.007	1.132	1.07	2.904
inv	(6,6,8)	0.209	0.590	0.209	0.646	1.003	1.153	1.047	1.134	1.059	1.302	1.029	3.365
	(6,6,10)	0.139	0.232	0.073	0.159	1.654	3.408	1.027	1.069	1.009	1.654	1.445	2.106

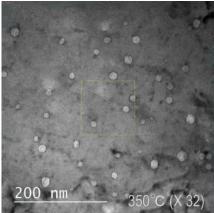
Median (50%) and 75%-quantile NMSE values of the symbolic expressions found by all the algorithms on several noisy benchmark datasets. Our CVGP finds symbolic expressions with the smallest NMSEs.

AI Driven Materials Discovery in Extreme Conditions

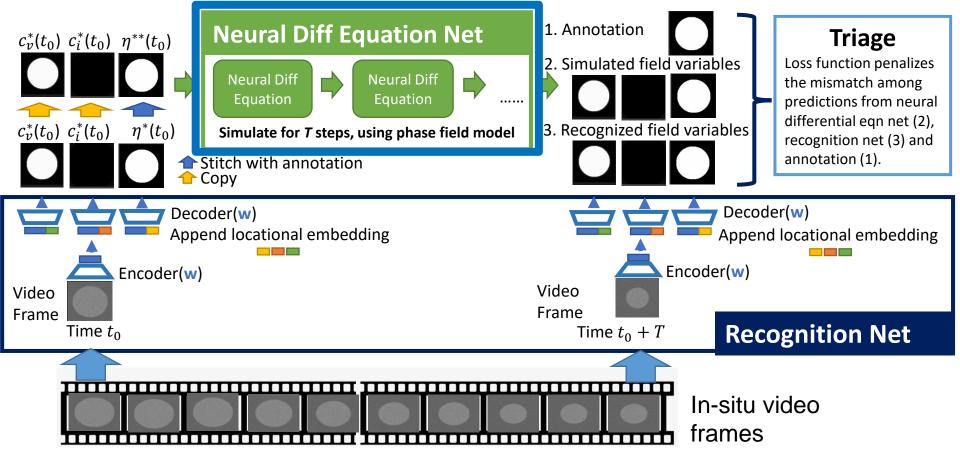
- Search for strong materials under heavy irradiation and extremely high temperature
- Understand defect formation, migration in extreme conditions
- Better materials for future nuclear reactors
- In-situ experimentation



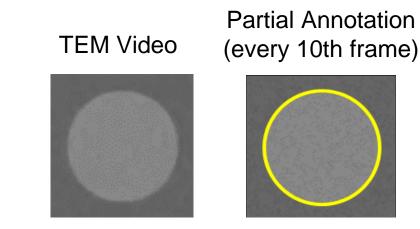




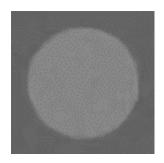
NeuraDiff: High Level Idea



Track Nanovoids + Learn Phase Field Model



NN cannot predict future well

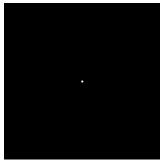


Nanovoid Tracking

Identify phase field model parameters $F = N \int \left[h(\eta) f^{s}(c_{v},c_{i}) + j(\eta) f^{v}(c_{v},c_{i}) + \frac{\kappa_{v}}{2} |\nabla c_{v}|^{2} + \frac{\kappa_{i}}{2} |\nabla c_{i}|^{2} + \frac{Simulate void evolution}{according to learned model} \right]$ $\frac{k_{\eta}}{2} |\nabla \eta|^{2} dV, \qquad according to learned model$ $\frac{\partial c_{v}}{\partial t} = \nabla \cdot \left(M_{v} \nabla \frac{1}{N} \frac{\delta F}{\delta c_{i}} \right) + \xi + P_{v} - R_{iv},$ $\frac{\partial c_{i}}{\partial t} = \nabla \cdot \left(M_{i} \nabla \frac{1}{N} \frac{\delta F}{\delta c_{i}} \right) + \xi + P_{i} - R_{iv},$ $\frac{\partial \eta}{\partial t} = -L \frac{\delta F}{\delta \eta} + \xi + P_{vi}.$ Phase-field simulation of irradiated metals: Part I: Void kinetics Phase-field simulation of irradiated metals: Part I: Void kinetics

Learning models for dendritic solidification

Ground-truth ϕ



Phase-field model:

$$\begin{split} F(\phi,m) &= \int \left(\frac{1}{2}\epsilon^2 |\nabla \phi|^2 + f(\phi,m)\right) dv, \\ f(\phi,m) &= \frac{1}{4}\phi^4 - \left(\frac{1}{2} - \frac{1}{3}m\right)\phi^3 + \left(\frac{1}{4} - \frac{1}{2}m\right)\phi^2, \\ \epsilon &= \bar{\epsilon}\sigma(\theta), \\ \sigma(\theta) &= 1 + \delta\cos(j(\theta - \theta_0)), \\ \theta &= \tan^{-1}\left(\frac{\partial\phi/\partial y}{\partial\phi/\partial x}\right), \\ m(T) &= (\alpha/\pi)\tan^{-1}[\gamma(T_{eq} - T)], \\ \text{Dendritic growth follows Allen-Cahn equation:} \\ \tau \frac{\partial\phi}{\partial t} &= -\frac{\delta F}{\delta\phi} \end{split}$$

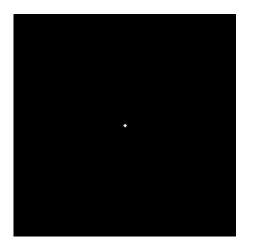
Temperature follows conservation law:

$$\frac{\partial T}{\partial t} = \nabla^2 T + \kappa \frac{\partial \phi}{\partial t}$$

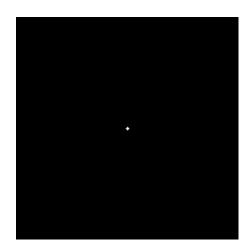
Vertical learning experiment

- Intentionally first learn on data in which ∇φ = 0;
- In this case, blue parameters do not affect dynamics;
- Focus on learning red parameters.
- Allow ∇φ to vary in the second stage, hence start to learn blue parameters.

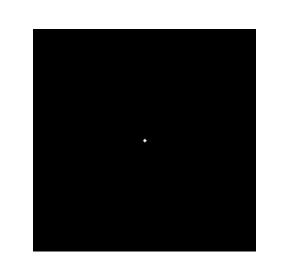
Comparison



Ground-truth ϕ



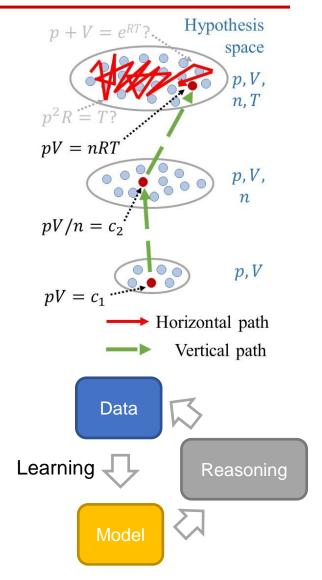
Learning all parameters at once



Vertical learning experiments

Conclusion

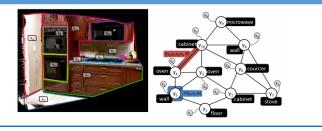
- Vertical symbolic regression
 - Incrementally build complex equations from simple ones using genetic programming
 - Learning from control variable experiments
- Vertical scientific discovery -- learning PDEs from data
- Look into future: integrate active reasoning into learning
 - Science progress resulted from insightful experiment design, courageous hypothesis forming (reasoning) + high-capacity modeling (learning)



- Introduction \checkmark
- Vertical Reasoning Driven Scientific Discovery
- Vertical Reasoning Solving Satisfiability Modulo Counting (SMC) Integrating Symbolic & Statistical AI with Provable Guarantees
- Conclusion

Vertical Reasoning to Solve Satisfiability Modulo Counting (SMC)

Provable likelihood maximization for Markov Random Fields



Stochastic optimization (Network design as an example)

Solving quantal response leader-follower games

All these problems *integrating symbolic and statistical AI* are SMC. SMC connects model counting predicates with \lor, \land, \neg , e.g.:

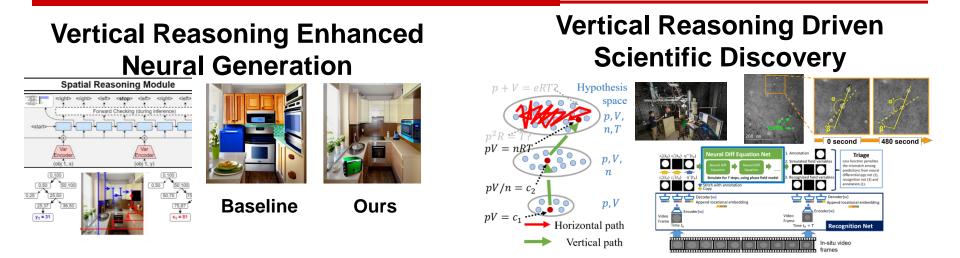
$$\begin{split} & \left(\sum_{y} f_1(x, y) \geq 2^{q_1}\right) \wedge \left(\neg \left(\sum_{y} f_2(x, y) \geq 2^{q_2}\right) \vee \\ & \left(\sum_{y} f_3(x, y) \geq 2^{q_3}\right)\right) \end{split}$$

Constant approximation guarantee

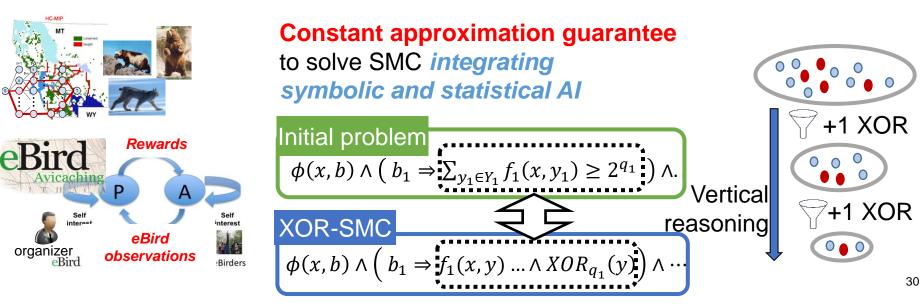
to solve SMC based on vertical reasoning streamlining XOR constraints. Vertical reasoning $\phi(x,b) \land (b_1 \Rightarrow \sum_{y_1 \in Y_1} f_1(x,y_1) \ge 2^{q_1}) \land$. VCR-SMC $\phi(x,b) \land (b_1 \Rightarrow f_1(x,y) \dots \land XOR_{q_1}(y)) \land \cdots$ 28

- Introduction \checkmark
- Vertical Reasoning Driven Scientific Discovery
- Vertical Reasoning Solving Satisfiability Modulo Counting (SMC) Integrating Symbolic & Statistical AI with Provable Guarantees
- Conclusion

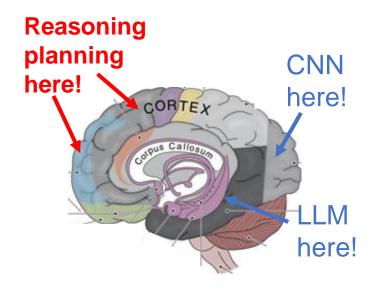
Embedding Reasoning for Learning

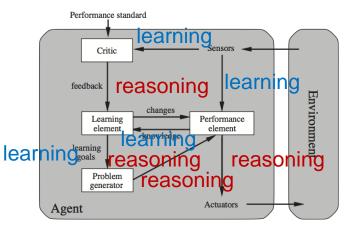


Vertical Reasoning Solving Satisfiability Modulo Counting with Guarantees



Conclusion





- Al agents (human brains) are integrated systems.
- "Reasoning + Learning" multiplies power than them alone.
- "LLM interfacing coding, web, ..." is a good start.
- **Deep** integration offers way more:
 - Reasoning generates designs satisfying user specifications
 - Reasoning expedites learning in scientific discovery
 - Reasoning solves SMC with constant approximation guarantees
- Much more to come, very exciting so far, very busy years ahead.

Fruitful Expedition on Integrating Reasoning with Learning

