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Intelligent Systems Integrate Learning and Reasoning

2

Knowledge

Data Action

Machine learning: 

• Bottom-up: Learn 

predictive models from 

data

• Challenging in 

providing formal 

guarantees

 

• May violate 

constraints in rare and 

unseen situations

Automated reasoning:
 

• Top-down: Build models 

from problem description

• Rigid models: problem 

formulation must be 

agreed a-priori

• Difficult to adapt to data 

distributions

Perceptio
n Reaction
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Knowledge

Data Action

Machine learning: 

• Bottom-up: Learn 

predictive models from 

data

• Challenging in 

providing formal 

guarantees

 

• May violate 

constraints in rare and 

unseen situations

Automated reasoning:
 

• Top-down: Build models 

from problem description

• Rigid models: problem 

formulation must be 

agreed a-priori

• Difficult to adapt to data 

distributions

Perceptio
n Reaction

Challenge for next 

generation AI: 

How to integrate 

learning with reasoning



Generalist Systems; Think Fast and Slow

4

Input Specifications:   

• Add a blue microwave 

right of the oven

• Add a green toaster 

left of the oven and 

below the sink

System 1 

perception

(fast thinking)

System 2 

planning & 

generation

(slow thinking) 

Reasoning & learning are 

in charge of different 

cognitive systems.

Need both for building a 

generalist AI.

Learning

Reasoning 

+ Learning



Integrate Reasoning into Design Generation

• Good designs need to meet industry standards 

and user needs, while capturing subtle aspects 

such as aesthetics and convenience.

• Complete constraint reasoning approach: 

satisfy design specifications, but cannot capture 

visual information. In fact, such info cannot be 

encoded in objective functions.

• Complete ML approach: generate beautiful 

designs, but cannot meet specifications.
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Existing Kitchen Env:   

Input Specifications:   

• Add a blue microwave 

right of the oven

• Add a green toaster 

left of the oven and 

below the sink

(stated in propositional 

logic)

Baseline (Stable Diffusion) Ours (CORE)



CORE Applied to Design Generation
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CORE Applied to Design Generation
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CORE Applied to Design Generation
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Our output

Baseline (Stable Diffusion)



CORE for Design Generation
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Fruitful Expedition on Integrating Reasoning with Learning
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Leader-follower Games

Citizen Science

Operational Research

Computational Sustainability

Design Generation Language Generation AI-driven Scientific Discovery

Learn Combinatorial 

Structures

Robotic Surgery

[IJCAI-19, Preprint-24]

[AAAI-23,24]

Automated 

Reasoning

Machine 

Learning
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• Vertical Reasoning Enhanced Neural Generation
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(SMC) Integrating Symbolic & Statistical AI with Provable 

Guarantees

• Conclusion
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AI-driven Scientific Discovery (Learning) Needs Reasoning

● Exciting progress in deep learning
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● Human learning (discovery) is better!

○ Active exploration with a 

purpose

○ Learn from an incredibly small 

set of “surprising” samples

○ Interpretable, elegant models & 

equations

Especially in science domains [AlphaFold]



Vertical vs. Horizontal Discovery

● What can AI learn from human 

scientists?

● Symbolic regression: learning a 

symbolic expression from data

○ A good benchmark mimicking 

scientific discovery process.

● State-of-the-art solvers follow horizontal 

paths

○ Can be challenging because of the 

exponential size of the hypothesis 

space.

● We propose: vertical paths – also 

scientists’ approach!

○ Search in reduced spaces are 

much easier!

○ Can supercharge AI-driven 

scientific discovery.
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Vertical path

Horizontal path

𝑝, 𝑉, 
𝑛, 𝑇

𝑝 + 𝑉 = 𝑒𝑅𝑇?

𝑝2𝑅 = 𝑇?

Hypothesis 

space

𝑝, 𝑉, 
𝑛

𝑝, 𝑉

𝑝𝑉 = 𝑐1

𝑝𝑉/𝑛 = 𝑐2

𝑝𝑉 = 𝑛𝑅𝑇



Symbolic regression

● Learning a symbolic expression from data

○ A good benchmark mimicking scientific 

discovery process.

● Incredibly difficult because of the large search 

space of all possible expressions.

● Can you guess which equation 𝑦 = 𝑓 𝑥1, 𝑥2, 𝑥3

generates the data shown in the left table?
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X1 X2 X3 Y

2.5 1.0 9.5 12

3.0 -1.0 4.0 1

1.6 3.5 5.2 10.8

1.8 1.0 3.2 5

7.1 8.6 3.8 64.9

1.7 1.0 2.3 4

2.5 2.6 3.1 9.6

8.9 1.1 2.0 11.8

4.2 -1.0 2.2 -2

5.8 1.0 7.2 13

1.6 5.7 1.2 10.3

9.7 -1.0 1.7 -8



Symbolic regression

● Learning a symbolic expression from data

○ A good benchmark mimicking scientific 

discovery process.

● Incredibly difficult because of the large search 

space of all possible expressions.

● Can you guess which equation 𝑦 = 𝑓 𝑥1, 𝑥2, 𝑥3

generates the data shown in the left table?

● How about if I only ask you to look into these 

rows?

𝑦 = 𝑥1 + 𝑥3?
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X1 X2 X3 Y

2.5 1.0 9.5 12

1.8 1.0 3.2 5

1.7 1.0 2.3 4

5.8 1.0 7.2 13



Symbolic regression

● Learning a symbolic expression from data

○ A good benchmark mimicking scientific 

discovery process.

● Incredibly difficult because of the large search 

space of all possible expressions.

● Can you guess which equation 𝑦 = 𝑓 𝑥1, 𝑥2, 𝑥3

generates the data shown in the left table?

● How about if I only ask you to look into these 

rows?

𝑦 = 𝑥1 + 𝑥3?

● How about these rows?

𝑦 = −𝑥1 + 𝑥3?
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X1 X2 X3 Y

3.0 -1.0 4.0 1

4.2 -1.0 2.2 -2

9.7 -1.0 1.7 -8



Symbolic regression

● Learning a symbolic expression from data

○ A good benchmark mimicking scientific 

discovery process.

● Incredibly difficult because of the large search 

space of all possible expressions.

● Can you guess which equation 𝑦 = 𝑓 𝑥1, 𝑥2, 𝑥3

generates the data shown in the left table?

● How about if I only ask you to look into these 

rows?

𝑦 = 𝑥1 + 𝑥3?

● How about these rows?

𝑦 = −𝑥1 + 𝑥3?

● Maybe the equation is:

𝑦 = 𝑥2𝑥1 + 𝑥3?         
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X1 X2 X3 Y

2.5 1.0 9.5 12

3.0 -1.0 4.0 1

1.8 1.0 3.2 5

1.7 1.0 2.3 4

4.2 -1.0 2.2 -2

5.8 1.0 7.2 13

9.7 -1.0 1.7 -8
INDEED!

Red and blue data are two control variable experiment 

trials in reduced hypothesis spaces (X2 controlled)!

Vertical discovery simplify symbolic regression!



x1 x2 x3 x4 y

… … … … …

x1 x2 x3 x4 y

… … … … …

x1 x2 x3 x4 y

… … … … …

x1 x2 x3 x4 y

… … … … …

Control Variable Genetic Programming (CVGP)
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x1 x3 x2 x4

-
× C2

x1 C1

-
× ×

x1 x3 x2 C5

-
× ×

x1 C3 x2 C4

x1 x2 x3 x4 y

0.3 0.5 0.1 0.7 -.32

0.6 0.5 0.1 0.7 -.29

0.2 0.5 0.1 0.7 -.33

0.9 0.5 0.1 0.7 -.26

(b) Control x3,x4

x1 x2 x3 x4 y

0.6 0.1 0.8 0.4 0.44

0.4 0.9 0.8 0.4 0.04

0.3 0.2 0.8 0.4 0.16

0.7 0.4 0.8 0.4 0.40

(c) Control x4

x1 x2 x3 x4 y

0.7 0.8 0.1 0.2 -.09

0.5 0.4 0.6 0.2 0.22

0.2 0.1 0.9 0.2 0.16

0.3 0.5 0.1 0.2 -.07

x1 x2 x3 x4 y

0.2 0.4 0.2 0.7 -.24

0.9 0.3 0.5 0.5 0.30

0.5 0.4 0.8 0.1 0.36

0.1 0.8 0.7 0.6 -.41

(d) No control(a) Control x2,x3,x4

Found by GP

Extended from 

previous reduced-

form equations 

using GP



Experiment Results
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Median (50%) and 75%-quantile NMSE values of the symbolic expressions found by all the 

algorithms on several noisy benchmark datasets. Our CVGP finds symbolic expressions 

with the smallest NMSEs. 



AI Driven Materials Discovery in Extreme Conditions

• Search for strong materials under heavy 

irradiation and extremely high 

temperature

• Understand defect formation, migration 

in extreme conditions

• Better materials for future nuclear 

reactors

• In-situ experimentation

21



NeuraDiff: High Level Idea
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Simulate for T steps, using phase field model 

Stitch with annotation

Neural Diff 
Equation ……

𝑐𝑣
∗(𝑡0) 𝑐𝑖

∗(𝑡0) 𝜂∗(𝑡0)

𝜂∗∗(𝑡0)

Copy

Neural Diff Equation Net 1. Annotation

2. Simulated field variables

3. Recognized field variables

Triage
Loss function penalizes 
the mismatch among
predictions from neural 
differential eqn net (2), 
recognition net (3) and 
annotation (1).

𝑐𝑣
∗(𝑡0) 𝑐𝑖

∗(𝑡0)

Neural Diff 
Equation

Time 𝑡0

Encoder(w) 
Video
Frame

Append locational embedding
Decoder(w) 

Recognition NetTime 𝑡0 + 𝑇

Encoder(w) 
Video
Frame

Append locational embedding

Decoder(w) 

In-situ video 

frames

Convolutional neural net 

with fixed kernel!



Track Nanovoids + Learn Phase Field Model

TEM Video
Partial Annotation

(every 10th frame)

Nanovoid 

Tracking
Identify phase field model parameters

Simulate void evolution 

according to learned model

23

NN cannot predict 

future well



Learning models for dendritic solidification

𝐹 𝜙, 𝑚 = 
1

2
𝜖2 ∇𝜙 2 + 𝑓(𝜙, 𝑚) 𝑑𝑣,

𝑓 𝜙, 𝑚 =
1

4
𝜙4 −

1

2
−

1

3
𝑚 𝜙3 +

1

4
−

1

2
𝑚 𝜙2,

𝜖 = ҧ𝜖𝜎(𝜃),

𝜎 𝜃 = 1 + 𝛿cos(𝑗(𝜃 − 𝜃0)),

𝜃 = tan−1 𝜕𝜙/𝜕𝑦

𝜕𝜙/𝜕𝑥
,

𝑚 𝑇 = 𝛼/𝜋 tan−1[𝛾(𝑇𝑒𝑞 − 𝑇)],

Dendritic growth follows Allen-Cahn equation:

𝜏
𝜕𝜙

𝜕𝑡
= −

𝛿𝐹

𝛿𝜙
Temperature follows conservation law:

𝜕𝑇

𝜕𝑡
= ∇2𝑇 + 𝜅

𝜕𝜙

𝜕𝑡 24

Phase-field model:

Ground-truth 𝜙

Vertical learning experiment

▪ Intentionally first learn on data in 

which ∇𝜙 = 0;

▪ In this case, blue parameters do not 

affect dynamics;

▪ Focus on learning red parameters.

▪ Allow ∇𝜙 to vary in the second stage, 

hence start to learn blue parameters.



Comparison
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Ground-truth 𝜙 Learning all 

parameters at 

once

Vertical learning 

experiments



Conclusion

● Vertical symbolic regression
○ Incrementally build complex equations from 

simple ones using genetic programming

○ Learning from control variable experiments

● Vertical scientific discovery -- learning 

PDEs from data

● Look into future: integrate active 

reasoning into learning
○ Science progress resulted from insightful 

experiment design, courageous hypothesis 

forming (reasoning) + high-capacity modeling 

(learning)  

26

Data

Model

ReasoningLearning
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Vertical Reasoning to Solve Satisfiability Modulo Counting (SMC)

All these problems integrating symbolic 

and statistical AI are SMC. SMC connects 

model counting predicates with ∨,∧, ¬, e.g.:

28organizer
eBird 

observations  

Rewards

Provable likelihood maximization 

for Markov Random Fields

Stochastic optimization 

(Network design as an example)

Solving quantal response

leader-follower games  

σ𝑦 𝑓1(𝑥, 𝑦) ≥ 2𝑞1 ∧ ቀ

ቁ

¬ σ𝑦 𝑓2(𝑥, 𝑦) ≥ 2𝑞2 ∨

σ𝑦 𝑓3(𝑥, 𝑦) ≥ 2𝑞3

𝜙 𝑥, 𝑏 ∧  𝑏1 ⇒ σ𝑦1∈𝑌1
𝑓1 𝑥, 𝑦1 ≥ 2𝑞1  ∧. .

𝜙 𝑥, 𝑏 ∧  𝑏1 ⇒ 𝑓1(𝑥, 𝑦) … ∧ 𝑋𝑂𝑅𝑞1
𝑦 ∧ ⋯

Initial problem

XOR-SMC

Constant approximation guarantee
to solve SMC based on 

vertical reasoning streamlining

XOR constraints.
+1 XOR

+1 XOR

Vertical

reasoning
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Embedding Reasoning for Learning

30

Vertical Reasoning Enhanced 

Neural Generation

+1 XOR

+1 XOR

𝜙 𝑥, 𝑏 ∧  𝑏1 ⇒ σ𝑦1∈𝑌1
𝑓1 𝑥, 𝑦1 ≥ 2𝑞1  ∧. .

Initial problem

XOR-SMC

Vertical

reasoning
organizer

eBird 

observations  

Rewards

Baseline Ours

Vertical Reasoning Driven 

Scientific Discovery

Vertical Reasoning Solving Satisfiability Modulo Counting with Guarantees

Constant approximation guarantee

to solve SMC integrating 

symbolic and statistical AI

𝜙 𝑥, 𝑏 ∧  𝑏1 ⇒ 𝑓1(𝑥, 𝑦) … ∧ 𝑋𝑂𝑅𝑞1
𝑦 ∧ ⋯



Conclusion

• AI agents (human brains) are integrated 

systems.

• “Reasoning + Learning” multiplies power 

than them alone.

• “LLM interfacing coding, web, …” is a 

good start.

• Deep integration offers way more:

– Reasoning generates designs satisfying 

user specifications

– Reasoning expedites learning in scientific 

discovery

– Reasoning solves SMC with constant 

approximation guarantees

• Much more to come, very exciting so far, 

very busy years ahead.
31

CNN 

here!

LLM 

here!

Reasoning 

planning 

here!

learning

learning

learning
learning

reasoning

reasoning
reasoningreasoning
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Automated 

Reasoning

Machine 

Learning
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