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1 Introduction

The integration of constraint programming (CP)

and machine learning (ML) requires a formal lan-
guage capable of bridging abstract, constraint- Neural i B .t Constraint
based reasoning with the fuzzy, multi-modal com- Network ﬁ_ﬁ‘—_ﬂ;‘ L Program
plexities of real-world environments. Formal log- ’F | L
ics have proven effective in structured domains. e - "
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However, applying them to real-world data often

leads to limitations. For instance, specifying the "Add a

precise desired location of a microwave in a kitchen microwave left

using hard constraints is impractical, as spatial re- of the sink."

lations with contextual nuances (convention, aes- ’F
thetics, etc) cannot feasibly be expressed. Mol I

Fuzzy and probabilistic logic offers a promis-
ing alternative, utilizing degrees of membership
rather than rigid classifications [§, 9 10]. Addi-
tionally, research has explored integrating fuzzy
logic with ML and CP, such as using classification
systems for constraint acquisition [7, 3]. However,
current fuzzy logic systems still usually depend
on human interpretation, making them difficult to
automate effectively in multi-modal applications,
among others.

We propose a novel fuzzy logic framework de-
signed to operate seamlessly in multi-modal con-
texts. By integrating CP and neural networks,
this approach aims to enable automated reason-
ing in complex environments while maintaining
the flexibility of fuzzy representations. This will
be done by casting predicates as hybrid enti-
ties, where part of their meaning is derived from
hardcoded binary values, and part from context-
informed neural networks outputting probability distributions. In this position paper, we propose this
logic on an exemplar spatial reasoning domain, and then discuss some methods of implementation.

Hard Constraint

Fuzzy Logic
Solution
Figure 1: Fuzzy constraint acquisition for placing a
microwave in a scene image based on the text ”left of
the sink.” (A) The original image. (B) A heatmap
showing the soft contextual component: a neural
network infers a distribution over microwave loca-
tions based on the image and text context. (C)
The hard component: the area to the right of the
red line is excluded by the ”left of” condition. (D)

The combined contextual fuzzy logic solution.
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Figure 2: The iterative refinement method for implementing our contextual fuzzy logic. The 3 steps
detail probability inference from multi-modal context, blocking and pruning constrained probabilities,
and sampling to make a refinement step.

2 Contextual Fuzzy Logic Under Multi-modal Data

Focusing on spatial logic as an example case, we develop this contextual fuzzy logic for the task of
placing textually-defined objects into a scene image. This task is a good example case because it requires
interaction with both natural language and visual data to determine appropriate spatial locations for
objects, such as placing a microwave in a kitchen already containing various furnishings (See Figure |1)).
It is fundamentally spatial, relying on constraints to enforce relationships between objects as perceived
from the camera’s perspective. While spatial reasoning is just one possible application of contextual
fuzzy logic, it exemplifies how we can integrate multi-modal data to model real-world complexities.
Objects and Spatial Components. Objects represent physical entities, denoted as o1, 09, 03, etc.,
with spatial components z and y defining their centers relative to the camera. For example, of represents
the z-coordinate of object 0y. Positive directions are defined as rightward for x and downward for y.
These components serve as the foundation for reasoning about spatial relationships.

Predicates and Multi-modal Context. Spatial predicates such as leftof, rightof, above, and
below define relationships between objects within a given multi-modal context ctz. Instead of resolving
to a binary result, these predicates yield a probability distribution over an object’s coordinates. For
example, leftof(o01, 09, ctz) returns a probability distribution over a-values, where P(of > 03) = 0, and
the remaining probabilities depend on ctx. Formally, given a potential assignment k:

leftof (o1, 09, ctr) — P(o] =k | of < 03, ctx)



Basic Operands. We include three primary operands for combining predicates:
e AN B =mnorm(P(A) x P(B)) — Conjunction (A): probabilities are multiplied and normalized.

e AV B = norm(max(P(A), P(B))) — Disjunction (V): maximum probabilities are selected and
normalized.

e “A=1— P(A) - Negation (—): probabilities are inverted.

3 Learning the Contextual Fuzzy Logic

One effective way to implement this combined approach is through a process of iterative refinement [6).
In this method, a neural network refines a range of possible values for each coordinate through steps
of halving the range and sampling one half to continue down, in a variant of SampleSearch [5]. During
each step, the hard components are enforced by ”zeroing-out” branches of the search tree that violate
the constraints, followed by re-normalizing the remaining branches. Dynamic enforcement of constraints
allows the system to prune invalid solutions early in the search process, reducing computational overhead
while maintaining interpretability in the intermediate steps. This approach (diagrammed in Figure [2)
allows constraints to be enforced dynamically throughout the search process, avoiding invalid solutions
early and reducing computational overhead. Interpretability in the intermediate steps is also maintained.

While iterative refinement offers significant advantages, it is not the only method within this family.
Another might involve embedding a constraint optimization layer directly within a neural network using
differentiable convex optimization solvers [4, 2| [I]. This single-step approach allows for optimization to
occur directly during network training. However, this method limits constraints to convex ones, which
may restrict the types of relationships that can be modeled and may also offer a less tightly integrated
approach compared to iterative refinement.

Submission Details

Submitted to: Position Papers Track.
Institution: Purdue University.
Attending: Both authors will be attending.

References

[1] Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J. Zico
Kolter. Differentiable convex optimization layers. In Advances in Neural Information Processing
Systems, pages 9558-9570, 2019.

[2] Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd. A rewriting system for
convex optimization problems. Journal of Control and Decision, 5(1):42-60, 2018.

[3] Christian Bessiere, Remi Coletta, Eugene C. Freuder, and Barry O’Sullivan. Leveraging the learning
power of examples in automated constraint acquisition. In Mark Wallace, editor, Principles and
Practice of Constraint Programming — CP 2004, pages 123-137, Berlin, Heidelberg, 2004. Springer
Berlin Heidelberg.

[4] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for convex
optimization. Journal of Machine Learning Research, 17(83):1-5, 2016.



[5]

[10]

Vibhav Gogate and Rina Dechter. Samplesearch: Importance sampling in presence of determinism.
Artificial Intelligence, 175(2):694-729, 2011.

Maxwell J. Jacobson and Yexiang Xue. Integrating symbolic reasoning into neural generative
models for design generation. Artificial Intelligence (AILJ), 2025. To appear.

S. D. Prestwich, E. C. Freuder, B. O’Sullivan, and D. Browne. Classifier-based constraint acquisi-
tion. Annals of Mathematics and Artificial Intelligence, 89(7):655-674, 2021.

Matthew Richardson and Pedro Domingos. Markov logic networks. Machine learning, 62:107-136,
2006.

Lotfi A. Zadeh. Fuzzy logic. In T.-Y. Lin, W. Pedrycz, and A. Bargiela, editors, Granular, Fuzzy,
and Soft Computing, pages 19-49. Springer-Verlag, 2009. Originally published in Meyers, R. A.
(Ed.), Encyclopedia of Complexity and Systems Science.

Yuxuan Zhang, Xiangzhi Bai, Ruirui Fan, and Zihan Wang. Deviation-sparse fuzzy c-means with
neighbor information constraint. IEEE Transactions on Fuzzy Systems, 27(1):185-199, 2019.



	Introduction
	Contextual Fuzzy Logic Under Multi-modal Data
	Learning the Contextual Fuzzy Logic

