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Figure 1: Our two-stage approach to integrating neural methods and and symbolic constraints for
prediction tasks.

Machine Learning (ML) and Constraint Acquisition (CA)[1] are two leading paradigms for mod-
eling data. ML learns an implicit model by searching a neural parameter space, while CA discovers
explicit constraints consistent with the data by searching a constraint space. These approaches
complement each other: ML is probabilistic and flexible but opaque, while CA is deterministic,
rigid, and interpretable. In many applications, data arises through both deterministic and proba-
bilistic processes. In these cases, combining ML and CA can produce a more suitable model than
either paradigm on its own, while reaping the benefits of both.[4]

We demonstrate this combined approach in Action Anticipation, a vital task in areas like human-
robot interaction, autonomous driving, and multi-agent systems. The goal is to predict an agent’s
future actions based on current and past observations of that agent. Past ML approaches use deep
neural networks[3][5][7], thereby lacking guarantees on the feasibility of predicted actions. However,
while the agents’ actions are highly probabilistic, the actions that are feasible for an agent to perform
in a given state are deterministic. For example, a chef can only cut a tomato if they are holding a
knife.

Our method divides action anticipation into two stages: action pruning and action selection. We
first apply explicit constraints learned through CA to prune infeasible actions based on the current
state, then employ a neural network to select a final action from the feasible subset. Through this
neuro-symbolic approach, we ensure predicted actions will be feasible. Our experiments show that
using learned constraints outperforms neural methods in action pruning and improves overall action
anticipation accuracy.
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Experiments

We conducted experiments in a simulated environment. The environment is a grid-world consisting
of a player, food items, and kitchen tools. Each grid tile is either walkable area or counter-top. The
player can move, interact with objects, and use tools it picks up.

We represent the environment states as scene graphs, which have the benefit of being interpretable
and thus easy to parse into logic. We use a Relational Graph Convolution Network[8] for neu-
ral prediction throughout our experiments and we do Constraint Acquisition using Popper[2], an
Inductive Logic Programming[6] system.

Results

From data, we acquire the following constraints as requirements for each action verb to be feasible:

• Move: Agent near empty square

• Grab: Agent near counter, agent not holding anything, something grab-able on the counter.

• Put down: Agent holding something put-down-able.

• Cut: Agent holding knife, agent near counter, something uncut on top of counter

These rules accurately and concisely capture the conditions for feasibility, and are easily understood
by humans.

Using our learned constraints, our methods outperform purely neural approaches in both action
pruning and action anticipation.

Task Method EMR(%) MAP(%) MAR(%)

Action pruning GNN 36 78.2 81.7

Learned constraints (ours) 66 85.7 91.1

Action anticipation No pruning, direct prediction w/ GNN 58 51.5 70.4

Prune w/ GNN 61 48.9 52.5

Prune w/ learned constraints (ours) 68 58.6 59.9

Table 1: Comparison of methods of action pruning and action anticipation. EMR, MAP and
MAR stand for exact match ratio, mean average precision and mean average recall, respectively.
We compare 2 methods of action pruning: multi-label prediction with a GNN, and applying our
learned constraints. We compare 3 methods of action anticpation: directly predicting the actions
with a GNN in one step, doing both pruning and selection with GNN’s, and our method of pruning
with our learned constraints and then selecting with a GNN.
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