
Exploiting Large Language Models for the Automated
Generation of Constraint Satisfaction Problems

AAAI 2025 Bridge on
Constraint Programming and Machine Learning

February 26th 2025

Philadelphia, Pennsylvania

Lothar Hotz1, Christian Bähnisch1, Sebastian Lubos2, Alexander Felfernig2,

Albert Haag3 and Johannes Twiefel4

Hamburger Informatik Technologie-Center, Universität Hamburg, Germany1

Graz University of Technology, Graz, Austria2

Product Management Haag GmbH, Bad Dürkheim, Germany3

exXxa GmbH, Hamburg, Germany4

Motivation

• Constraints are solved by developing a constraint program with a
constraint tool.

• A constraint program is a software program which uses a certain
library for representing constraints.

• LLMs can write software programs.
• Can LLMs write a constraint program for a given constraint problem?

© Lothar Hotz, Universität Hamburg, HITeC e.V.2

8-Queens as Constraint Problem
from pychoco.model import Model

from test_tool import verify_solutions

model = Model("8-Queens")
Create an array of 8 variables representing the positions of queens on a

chess board

queens = model.intvars(8, 1, 8)
Add constraints

for i in range(8):

for j in range(i + 1, 8):

Queens cannot be on the same row

model.arithm(queens[i], "!=" , queens [j]).post()
Queens cannot be on the same diagonal

model.arithm(queens[i], "-", queens[j], "!=", i - j).post ()
model.arithm(queens[i], "-", queens[j], "!=", j - i).post ()

Find all solutions

solver = model.get_solver()
solutions = []

for solution in solver.find_all_solutions():
solutions.append([solution.get_int_val(queens[i]) for i in range(8)])

verify_solutions(solutions , "queen8")

© Lothar Hotz, Universität Hamburg, HITeC e.V.3

This Paper

• Solve known constraint problems by generating a constraint program
for:

• 3- and 8-Queens Problem
• Map Coloring
• Traveling Salesperson Problem

• How to prompt?
• What to do with syntactically inappropriate, incorrectly generated

programs?
• How to check the semantics of the generated program?

© Lothar Hotz, Universität Hamburg, HITeC e.V.4

Our Approach

Generate textual
answer and code

Initial prompt

Call LLM

Human LLM/Assistant Python_REPL (Constraint Solver)

Get LLM result

Get Error/Run result

Our Iterator Program

Run CodeCode?

Text?

Ready

Sep. 3rd 2024, https://ceur-ws.org/Vol-3812/paper13.pdf
© Lothar Hotz, Universität Hamburg, HITeC e.V.5

The Initial Prompt (1/2)

tool Python_REPL, description: A Python shell. Use this to run and verify your solution to
the constraint problem. Input should be a valid Python script using pychoco. The last line
should be "verify_solutions(solutions, ...)" in order to verify your solutions
System:
You are an agent designed to solve constraint problems, you write python code to solve
and verify constraint problems. You have access to a python REPL, which you can use to
execute python code and verify your solution. If you get an error, debug your code and try
again. You only use the constraint solver pychoco. You conclude your python code with a
variable "solutions" and verify it with the method call "verify_solutions(solutions,
<problem_name>", where <problem_name> is given to you as the first word of the
instructions. "solutions" should be a list of all solutions to the constraint problem. If
verification fails, you correct your solution.
Use the following example as a template for solving constraint problems with pychoco:

© Lothar Hotz, Universität Hamburg, HITeC e.V.6

The Initial Prompt (2/2)

Use the following example as a template for solving constraint problems with pychoco:

User: ints10. find numbers one to 10.

Assistant:
‘‘‘ python

from pychoco.model import Model

from test_tool import verify_solutions

model = Model()

x = model.intvar(1, 10, "x")

solver = model.get_solver()

solutions = [s.get_int_val (x) for s in solver.find_all_solutions
()]

verify_solutions(solutions, "ints10")

‘‘‘ © Lothar Hotz, Universität Hamburg, HITeC e.V.7

Solve Problem Prompts – 8-Queen

queen8 = "solve the 8-queen problem”

© Lothar Hotz, Universität Hamburg, HITeC e.V.8

Solve Problem Prompts – Map Coloring

coloring = """
solve the map coloring problem for four regions , three colors and the given
adjacency :
regions = [’A ’, ’B ’, ’C ’, ’D ’]
adjacency_list = {
’A ’: [’B ’, ’C ’],
’B ’: [’A ’, ’C ’, ’D ’],
’C ’: [’A ’, ’B ’, ’D ’],
’D ’: [’B ’, ’C ’]
}.
the solution should be a list of python dicts where each dict maps regions to
color indices
"""

© Lothar Hotz, Universität Hamburg, HITeC e.V.9

Solve Problem Prompts – TSP

tsp = """ solve the traveling salesman problem , use the following
problem
instance :
Number of cities
C = 4
Distance matrix
D = [[0 , 10, 15, 20] , [10 , 0, 35, 25] , [15 , 35, 0, 30] , [20 , 25, 30, 0]]
the solution should be a list of valid solutions , each solution being a list
of
integers representing the cities to be visited .
"""

© Lothar Hotz, Universität Hamburg, HITeC e.V.10

Tool calls

FileName Tool Calls

coloring_cs_agent_sol2_gpt-4-1106-preview_20240529095402.txt 3

coloring_cs_agent_sol2_gpt-4-1106-preview_20240529095157.txt 1

queen8_cs_agent_sol2_gpt-4-1106-preview_20240529094451.txt 1

queen8_cs_agent_sol2_gpt-4-1106-preview_20240529094710.txt 7

tsp_cs_agent_sol2_gpt-4-1106-preview_20240529090726.txt 15, stopped

tsp_cs_agent_sol2_gpt-4o-2024-05-13-_20240529114219.txt 14, stopped

square_cs_agent_sol2_gpt-4-1106-preview_20240529100358.txt 2

square_cs_agent_sol2_gpt-4-1106-preview_20240529095955.txt 6

See Appendix for all tables
© Lothar Hotz, Universität Hamburg, HITeC e.V.11

Observations (1/2)

• For all problems, a constraint code for at least one solution was generated.
• For all problems except TSP, constraint code that computes all solutions

was generated.
• The iterative approach which includes syntactic and semantic validation is

successful.
• Basic assumption: writing tests for validation is often easier than writing a

constraint program, hence, less effort is expected with our approach.
• Not the complete PyChoco API could be provided as LLM context, because

of the limited number of tokens

© Lothar Hotz, Universität Hamburg, HITeC e.V.12

Observations (2/2)

• The LLM (chatgpt) behaved non-deterministic in our experiments
even with temperature set to 0 and fixed seed.

• Similarities to OpenAI Reasoning:
• Iterative increase of context
• Shorten of context, if getting too large

• Frameworks:
• https://www.langchain.com/
• openAI Assistant: https://platform.openai.com/docs/assistants/overview
• Chain of Thought
• ReAct: Synergizing Reasoning and Acting in Language Models. Yao, S., Zhao, J.,

Yu, D., Du, N., Shafran, I., Narasimhan, K., und Cao, Y. (2023)
© Lothar Hotz, Universität Hamburg, HITeC e.V.13

Research Questions (1/2)

• RAG approach with examples of solved constraint problems
• For textually given mathematical constraint problems
• For textually given industrial configuration problems

• Can an LLM also solve a constraint problem, not “only” generate a
model?

• Hybrid approach needed?

RAG: Retrieval Augmented Generation © Lothar Hotz, Universität Hamburg, HITeC e.V.14

Research Questions (2/2)

• Generate declarative knowledge with LLMs
• SAT, PDDL, ASP, Constraints
• Ontologies

• Context vs. fine-tuned LLMs
• Train a pre-trained LLM with domain-specific knowledge

© Lothar Hotz, Universität Hamburg, HITeC e.V.15

Summary

• Query solutions for known constraint problems
• Iterative result without human in the loop for:

• Syntactically correct code

• Semantically validated code
• An LLM can generate constraint programs that solve known constraint

problems through our iterative approach.
• Paper: https://ceur-ws.org/Vol-3812/paper13.pdf
• Implementation: https://doi.org/10.5281/zenodo.12794211
• Next steps:

• Create constraint programs for new problems

© Lothar Hotz, Universität Hamburg, HITeC e.V.16

https://ceur-ws.org/Vol-3812/paper13.pdf
https://doi.org/10.5281/zenodo.12794211

Thank you for listening!

Contact: lothar.hotz@uni-hamburg.de

17

8-Queens Generated Second Last Step
from pychoco.model import Model
from test_tool import verify_solutions

model = Model("8-Queens Problem")

Create an array of integer variables representing the position of each queen.
Each variable has a domain from 1 to 8, representing the row number in a particular column.
queens = [model.intvar(1, 8, "queen_{}".format(i)) for i in range(8)]

Constraints: no two queens can be in the same row, column, or diagonal.
model.all_different(queens).post()
for i in range(8):

for j in range(i+1, 8):
model.arithm(queens[i], "-", queens[j], "!=", j - i).post()
model.arithm(queens[i], "+", queens[j], "!=", j - i).post()

Find all solutions
solver = model.get_solver()
solutions = []
while solver.solve():

solutions.append([queens[i].get_value() for i in range(8)])

verify_solutions(solutions, "queen8")

© Lothar Hotz, Universität Hamburg, HITeC e.V.18

8-Queens Generated Second Last Step
from pychoco.model import Model
from test_tool import verify_solutions

model = Model("8-Queens Problem")

Create an array of integer variables representing the position of each queen.
Each variable has a domain from 1 to 8, representing the row number in a particular column.
queens = [model.intvar(1, 8, "queen_{}".format(i)) for i in range(8)]

Constraints: no two queens can be in the same row, column, or diagonal.
model.all_different(queens).post()
for i in range(8):

for j in range(i+1, 8):
model.arithm(queens[i], "-", queens[j], "!=", j - i).post()
model.arithm(queens[i], "+", queens[j], "!=", j - i).post()

Find all solutions
solver = model.get_solver()
solutions = []
while solver.solve():

solutions.append([queens[i].get_value() for i in range(8)])

verify_solutions(solutions, "queen8")

Pyton_REPL: 10 of the 746 solutions are correct. Expected 92 solutions
Assistant: It appears that the previous code is not generating all the correct
solutions as expected. I will revise the code to ensure that all constraints are
correctly implemented and all solutions are found. Let me fix and run the code once more.

© Lothar Hotz, Universität Hamburg, HITeC e.V.19

8-Queens Generated Last Step - Result
from pychoco.model import Model
from test_tool import verify_solutions

model = Model("8-Queens Problem")

Create an array of integer variables representing the position of each queen.
Each variable has a domain from 1 to 8, representing the row number in a particular column.
queens = [model.intvar(1, 8, "queen_{}".format(i)) for i in range(8)]

Constraints: no two queens can be in the same row, column, or diagonal.
model.all_different(queens).post()
for i in range(8):

for j in range(i+1, 8):
model.arithm(queens[i], "-", queens[j], "!=", j - i).post() # Different diagonals
model.arithm(queens[i], "+", queens[j], "!=", i - j).post() # Different diagonals

Find all solutions
solver = model.get_solver()
solutions = []
while solver.solve():

solutions.append([queens[i].get_value() for i in range(8)])

verify_solutions(solutions, "queen8")

Python_REPL: 92 of the 92 solutions are correct. Expected 92 solutions
Assistant: All 92 solutions to the 8-Queen problem have been found and verified as correct

© Lothar Hotz, Universität Hamburg, HITeC e.V.20

	Exploiting Large Language Models for the Automated Generation of Constraint Satisfaction Problems��AAAI 2025 Bridge on �Constraint Programming and Machine Learning�February 26th 2025��Philadelphia, Pennsylvania
	Motivation
	8-Queens as Constraint Problem
	This Paper
	Our Approach
	The Initial Prompt (1/2)
	The Initial Prompt (2/2)
	Solve Problem Prompts – 8-Queen
	Solve Problem Prompts – Map Coloring
	Solve Problem Prompts – TSP
	Tool calls
	Observations (1/2)
	Observations (2/2)
	Research Questions (1/2)
	Research Questions (2/2)
	Summary
	Foliennummer 17
	8-Queens Generated Second Last Step
	8-Queens Generated Second Last Step
	8-Queens Generated Last Step - Result

