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Preface

Big Data is an emerging research area of great interest across many communities in computer science, for example, systems,
programming languages, parallel and distributed computing, artificial intelligence, social computing. Big Data is character-
ized by large amounts of data being generated continuously by interconnected systems of people and things — click data,
audio/speech data, natural language text (in multiple languages), images/video data. The challenge is to analyze the informa-
tion content in these vast, continuous data streams, use them for descriptive and predictive analytics in various domains, build
more robust and intelligent learning systems. Big Data offers incredible opportunities in a very diverse set of fields ranging
from Consumer Marketing to politics (campaigning).

The objective of this workshop is to bring together a multi-disciplinary group of researchers and technologists from
academia and industry to explore the opportunities of Big Data focusing both on applications of artificial intelligence to Big
Data problems and on the use of Big Data in Al (e.g. in modeling, learning, problem-solving, multi-modal analytics).

Papers in the workshop cover topics such as:

e constraints

e data analytics

e data cleaning

e machine learning
e ontologies

e relational learning

e semantic modelling



Proc. of the 1st AIBD Workshop, Beijing, China, 5 Aug, 2013

Organization

Workshop Co-Chairs:

Barry O’Sullivan, University College, Ireland

Vijay Saraswat, IBM Research, Yorktown Heights, USA
Roland H.C. Yap, National University of Singapore, Singapore

Program Committee:

Randy Goebel, University of Alberta, Canada
Huan Liu, Arizona State University, USA
Brian MacNamee, DIT, Ireland

Pedro Meseguer, CSIC, Spain

Vikas Sindhwani, IBM Research, USA
Shivkumar Vaithynathan, IBM Research, USA

AIBD-iii



Proc. of the 1st AIBD Workshop, Beijing, China, 5 Aug, 2013

AIBD-iv



Proc. of the 1st AIBD Workshop, Beijing, China, 5 Aug, 2013

Workshop Papers

1 Learning Bayes Nets with Link Uncertainty for Relational Data Sets
Oliver Schulte, Zhensong Qian

5 Semantic Modeling for Big Data Integration
Craig Knoblock, Pedro Szekely

7 High Quality Data Generation: An Ontology Reasoning based Approach
Yue Ma, Julian Mendez

9 Rethinking big data: the role of artificial intelligence and machine learning
Randy Goebel

11 On Distributed Constraints and Big Data
Pedro Meseguer

AIBD-v



Proc. of the 1st AIBD Workshop, Beijing, China, 5 Aug, 2013

AIBD-vi



Proc. of the 1st AIBD Workshop, Beijing, China, 5 Aug, 2013

Learning Bayes Nets with Link Uncertainty for Relational Data Sets

Oliver Schulte and Zhensong Qian

School of Computing Science
Simon Fraser University
Vancouver-Burnaby, Canada

Abstract

Many if not most big data sets are maintained
in relational databases. We describe Bayes net
learning methods that can discover knowledge
about correlations among both link types and
node attributes in big relational data. A key
scalability challenge for relational learning is to
compute event counts in a relational database
(sufficient statistics), especially when these in-
volve negated relationships. We provide em-
pirical evidence that the fast Mobius transform
provides a scalable solution for this problem.

1 Introduction: Link Correlations

Scalable link analysis for relational data with multiple
link types is a challenging problem in network science.
We describe a method for learning a Bayes net that
captures simultaneously correlations between link types,
link features, and attributes of nodes.

Building a Bayes net model is useful for big data anal-
ysis because such models provide a compact summary
of the statistical relationships in the data. The model
supports both descriptive and predictive analytics. Cor-
relations are presented to the user in a graphical way,
and queries about probabilistic relationships can be an-
swered quickly using Bayes net inference rather than via
database queries run against a large dataset.

Previous work on learning Bayes nets for relational
data was restricted to correlations among attributes
given the existence of links [4]. The larger class of cor-
relations examined in our new algorithms includes two
additional kinds:

1. Dependencies between two different types of links.

2. Dependencies among node attributes given the ab-
sence of a link between the node.

Contributions include the following:

1. To our knowledge this is the first implementation of
Bayes net learning for modelling correlations among
different types of links.

2. Using the Mobius transform to make the computa-

tion of sufficient statistics for negated relationships
tractable [4].

2 Background and Notation

Poole introduced the Parametrized Bayes net (PBN) for-
malism that combines Bayes nets with logical-relational
syntax [2]. A population is a set of individuals. A pop-
ulation variable is capitalized. A functor represents a
function or a Boolean predicate. A predicate with more
than one argument is called a relationship; other func-
tors are called attributes. A Parametrized random
variable (PRV) is of the form f(X1,...,X,), where the
populations associated with the variables are of the ap-
propriate type for the functor. A Parametrized Bayes
Net (PBN) structure is a directed acyclic graph whose
nodes are PRVs.

We assume that data are represented in a standard
relational schema containing a set of tables, each
with key fields, descriptive attributes, and possibly for-
eign key pointers. The powerset of relationship ta-
bles can be ordered as a lattice (e.g., {Reg(S,C)} C
{Reg(S, C), Teaches(C, P)}. For each relationship set,
there is a data table whose columns consist of: (1) the
attributes of all entities/relationships involved in the set,
and (2) a Boolean relationship node for each relationship,
that records whether the relationship holds between two
entities. For an illustration of these concepts see Fig-
ure 1.

Methods Compared We compared the following
methods.

Flat Applies a single-table Bayes net learner to the
maximal data table comprising all relationship sets
in the database. The results of [3] provide a theo-
retical justification for this procedure.

LAJ The previous hierarchical learn-and-join method
[4] without relationship nodes in the data table
and hence without link correlations. Conducts
bottom-up search through the lattice of relationship
sets. Dependencies (Bayes net edges) discovered for
smaller sets are propagated to larger sets.

LAJ+ The new LAJ method with relationship data
that has the potential to find link correlations.
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Figure 1: Database Table Instances: (a) Student, (b) Registered (c) Course. To simplify, we added the information
about professors to the courses that they teach. (d) The data table for Registered(S,C), which lists for each pair of
entities their descriptive attributes, whether they are linked by Registered, and the attributes of a link if it exists. L
means “not applicable.” (e) A Parametrized Bayes Net for the university schema.

Dataset Flat LAJ+ LAJ
University 1.916/x 1.183/x | 0.291/x
Movielens 38.767/x 18.204/x | 1.769/x
Mutagenesis 3.231/x 3.448/x ] 0.982/x
Small-Hepatitis | 9429.884/x | 8.949/x | 10.617/x

Table 1: Model Structure Learning Time in seconds.
The first number refers to a simple SQL query implemen-
tation, the second to an implementation with database
indexes and the fast Mobius transform.

3 Evaluation

For the details of the system setup, the datasets, and the
fast Mobius transform please see [4]. We report learning
time, log-likelihood, Bayes Information Criterion (BIC),
and the Akaike Information Criterion (AIC) [1].

3.1 Results

Learning Times Table 1 provides the model search
time for each of the link analysis methods. The combina-
tion of indexing and the Mdbius transform provides sub-
stantial speedups. On the medium-size and more com-
plex datasets (Hepatitis, MovieLens), hierarchical search
is much faster due to its use of constraints.

Statistical Scores On the medium-sized dataset
MovieLens, which has a simple structure, all three meth-
ods score similarly. LAJ and LAJ+ return the same
model. The most complex dataset, Hepatitis, is a chal-
lenge for flat search, which overfits severely. Because
of the complex structure of the Hepatitis schema, the
hierarchical constraints are effective in combating over-
fitting. The situation is reversed on the Mutagenesis
dataset where flat search does much better than hier-
archical search. The reason for that is that, unusu-

University BIC AIC log-likelihood | # Parameter
Flat -17638.27 | -12496.72 -10702.72 1767
LAJ+ -13495.34 | -11540.75 -10858.75 655
LAJ -13043.17 | -11469.75 -10920.75 522
MovieLens BIC AIC log-likelihood | # Parameter
Flat -4912286.87 | -4911176.01 | -4910995.01 169
TAJTT 4911339.74 | -4910320.94 | -4910154.94 154
LAJ 4911330.74 | -4910320.04 | -4910154.94 154
Mutagenesis BIC AIC log-likelihood | # Parameter
Flat -21844.67 | -17481.03 -16155.03 1289
LAJ+ -47185.43 | -28480.33 -22796.33 5647
LAJ -30534.26 | -25890.89 -24479.89 1374
Hepatitis BIC AIC log-likelihood | # Parameter
Flat -7334391.72 | -1667015.81 -301600.81 1365357
LAJ+ -457594.18 | -447740.51 -445366.51 2316
LAJ -461802.76 | -452306.05 -450018.05 2230

Table 2: Performance
rithms by dataset.

of different Model Search Algo-

ally, links in Mutagenesis are dense. As a result, we
find strong correlations between attributes conditional
on the absence of relationships. Our current version of
the LAJ+ algorithm cannot detect such correlations; we
leave an appropriate extension for future work.

4 Conclusion

We described different methods for extending relational
Bayes net learning to correlations involving links. Sta-
tistical measures indicate that Bayes net methods suc-
ceed in finding relevant correlations. There is a trade-off
between statistical power and computational feasibility
(full table search vs constrained search). Hierarchical
search often does well on both dimensions, but needs
to be extended to handle correlations conditional on the
absence of relationships.

AIBD-2



Proc. of the 1st AIBD Workshop, Beijing, China, 5 Aug, 2013
References

[1] D. Chickering. Optimal structure identification with
g
greedy search. Journal of Machine Learning Re-
search, 3:507-554, 2003.

[2] David Poole. First-order probabilistic inference. In
1JCAI pages 985-991, 2003.

[3] Oliver Schulte. A tractable pseudo-likelihood func-
tion for Bayes nets applied to relational data. In
SIAM SDM, pages 462-473, 2011.

[4] Oliver Schulte and Hassan Khosravi. Learning graph-
ical models for relational data via lattice search. Ma-
chine Learning, 88(3):331-368, 2012.

[5] Yizhou Sun and Jiawei Han. Mining Heterogeneous
Information Networks: Principles and Methodolo-
gies, volume 3. Morgan & Claypool Publishers, 2012.

AIBD-3



Proc. of the 1st AIBD Workshop, Beijing, China, 5 Aug, 2013

AIBD-4



Proc. of the 1st AIBD Workshop, Beijing, China, 5 Aug, 2013

Semantic Modeling for Big Data Integration

Craig A. Knoblock and Pedro Szekely
University of Southern California
Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292

We are developing an environment where developers compose various sources and tools to
analyze a wide range of big datasets. This environment will be effective to the extent that data
can flow seamlessly from one tool to another. But this is no easy task. The problem is that most
analytic tools require data to be organized in a particular way using specific formats. For example,
network analysis tools require data to be represented as network graphs; time-series analysis tools
require data to be organized around the temporal information in the data; visualization components
typically have their own requirements for the data. There is typically a mismatch between the input
and output requirements of the datasets and tools.

The problem of data cleaning and transformation is a huge problem today, even when dealing
with small to moderate sized datasets, but especially for big datasets. The usual approach is to
perform the transformations manually or write programs to do this, but this requires tremendous
time and effort, is prone to errors, and does not scale to the large datasets. In prior work, we
used Karma to solve data preparation problems for environmental scientists working on simulating
stream metabolism. They use data from a variety of sensors and data repositories from various
government agencies. Even though the datasets are small, containing only thousands of records,
prior to our involvement it took scientists weeks and months to prepare the data. They used a
combination of manual editing and custom scripts to clean, normalize, resample, integrate and
restructure the data to satisfy the requirements of their simulation models. Using Karma we were
able to generate scripts that automate the process, enabling them to automatically run their analysis
every day with the most recent data [1].

We are developing a data cleaning and transformation approach that will free developers from
the time-consuming and error-prone work of cleaning and reshaping the data to satisfy the data
assumptions of the analysis and visualization tools. The overall approach is shown in Figure 1.
Our tool will (1) automate much of the data transformation, (2) provide an easy to use interface
that allows developers to specify the parts of the process that need to be refined, and (3) efficiently
execute the required transformations on big datasets. Our tool will reduce the time and effort it
takes for developers to define a required set of data transformations and support the execution of
those transformations at scale, thus enabling developers to focus on the analysis workflows, trying
different tools, different parameters, etc. in order to optimize the analyses for the end users.
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Figure 1: xKarma allows a user to rapidly build and execute data integration plans

Our approach is based on our existing Karma semantic integration tool [4, 2, 3] that already
solves significant aspects of this problem. The key insight in our approach is that in Karma we
developed techniques to semi-automatically build semantic descriptions (models) of the data. Fur-
thermore, our techniques build these models of datasets based on small samples of a few hundred
records. Users of our tool will define their data shaping tasks using examples in an interactive easy
to use interface, reaping the benefits of these semantic models that enable Karma to provide a level
of assistance that is not possible based on purely syntactic models. Karma then generates the plans
that implement the transformations that can be run offline on large datasets. For example, consider
the situation where an analysis tool requires a set of data in a particular format, but the required
data is actually spread over multiple datasets and in a very different format. Our system would
use the knowledge of the input requirements of the analysis tool to interactively work with a user
to quickly define a transformation plan on a small subset of the data and then convert that into a
general transformation plan that is then efficiently executed on the input datasets.
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High Quality Data Generation: An Ontology Reasoning based Approach *
(Extended Abstract)

Yue Ma

Julian Mendez

Institute of Theoretical Computer Science, TU Dresden, Germany
{mayue,mendez} @tcs.inf.tu-dresden.de

Abstract

As Big Data is getting increasingly more helpful
for different applications, the problem of obtaining
reliable data becomes important. The importance is
more obvious for domain specific applications be-
cause of their abstruse domain knowledge. Most of
the Big Data based techniques manipulate directly
datasets under the assumption that data quantity can
lead to a good system quality. In this paper, we show
that the quality can be improved by automatically
enriching a given dataset with more high-quality
data beforehand. This is achieved by a tractable rea-
soning technique over the widely used biomedical
ontology SNOMED CT. Our approach is evaluated
by the scenario of formal definition generation from
natural language texts, where the average precision
of learned definitions is improved by 5.3%.

Domain specific Big Data is of particular interest for domain
specific applications. SNOMED CT [SNOMED Clinical Terms,
2006, ] is one of such data (a.k.a. ontology) and now a widely
accepted international standard. It describes concepts such as
anatomical structures, disorders, and organisms. It has been
adopted worldwide as a standard for electronic health records
and is also used in clinical decision support systems. Users can
access SNOMED CT through browsers such as NIH Browser
(cf. Table 1 for the formal definition of the concept Baritosis
given in SNOMED CT).

From Table 1, we can see that an important aspect for
SNOMED CT development is to predict relationships among
concepts, which can enable the formal definition genera-
tion of concepts (e.g. from texts) [Ma and Distel, 2013b;
Tsatsaronis et al., 2013; Ma and Distel, 2013a]. Unlike tra-
ditional text mining problems, due to the data quantity and
complexity, it is unrealistic to manually build a training data
to be used to predict new relationships among SNOMED CT
concepts. Since the emergence of Big Data, such as Freebase
or DBpedia, this can be partially solved by a new learning ap-
proach named distance supervision [Mintz et al., 2009] based
on the assumption that the quantity of Big Data can guarantee

*We acknowledge financial support by DFG in the Research Unit
FOR 1513 project B1 and in the Collaborative Research Center 912
"Highly Adaptive Energy-efficient Computing”.

Table 1: Baritosis as displayed by NIH Browser
Concept: [50076003] Baritosis
Relationships from this concept (9)
Baritosis | Causative agent | Barium dust (Defining)
Baritosis | Associated morphology | Deposition of foreign material
Baritosis | Finding site | Lung structure (Defining)

Baritosis | Associated morphology | Inflammation
Baritosis | Finding site | Lung structure (Defining)

Baritosis | Is a | Pneumoconiosis due to inorganic dust

Baritosis | Clinical course | Courses (Qualifier)
Baritosis | Episodicity | Episodicities (Qualifier)
Baritosis | Severity | Severities (Qualifier)

the quality of the automated annotation step. In this paper,
we show that the system quality for predicting SNOMED CT
relationships can be further improved by automatically enrich-
ing the SNOMED CT relationships before being used in the
learning phase based on distance supervision.

The Distance Supervision based on Big Data

The general framework of distance supervision for text mining
can be described as follows:

e Data projection: given a textual corpus 7 and a Big Data
set D, find the occurrences of instances of D in 7T, thus
obtaining the annotation data.

e Model learning: once the annotation data is ready, a su-
pervised learning approach is applied to extract a model.

e Instance prediction: the learned model will be used to
predict property of test data.

For the data projection process, when D is a Big Data, usually
there are automated annotation tools with a good quality, such
as the DBpedia Spotlight tool [Mendes et al., 2011] for DB-
pedia data and the Metamap developed at the U.S. National
Library of Medicine for SNOMED CT. Moreover, depending
on the tasks, D can be of different forms besides mere con-
cepts as handled by DBpedia Spotlight and Metamap. Since
we aim to extract relations between concepts in this paper,
D should be concept relationships. Due to the continuous
development of SNOMED CT since 1965, there are already
more than 1,360,000 relationships in SNOMED CT as of 2011.
However, we distinguish two usages of these relationships,
explicit and inferred as detailed below.

AIBD-7
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Explicit and Inferred Role Bases

The explicit role base ExpRB contains all relationships among
concepts that are explicitly given in the description of con-
cepts in SNOMED CT. For instance, by Table 1, we have
Baritosis|Causative_agent|Barium_dust is an explicit one.

Reasoning provides a way to use implicit information
encoded in SNOMED CT. The inferred role base INfRB is
achieved through a tractable Description Logic (DL) reason-
ing engine as follows: InfRB = {A|R|B : SNOMED = A C
3JR.B}, where = is the logical entailment under DL seman-
tics which is tractable for £L++ [Baader et al., 2005], the
logic language underlying SNOMED CT. By this, we have
Baritosis|Causative_agent|Dust as an inferred relationship
since Barium_dust is a subclass of Dust by SNOMED CT.
We achieve this by the optimized reasoner jcel![Mendez,
2012] which can classify SNOMED CT in 13 minutes. By the
monotonicity of DL semantics, we have ExpRB C InfRB.

Once a role base is fixed, annotated sentences can be aligned
with a relationship if they contain two concepts that have a
relationship according to the role base. For example, we
have the following sentence annotated by Metamap: “Barito-
sis/Baritosis_(disorder) is pneumoconiosis caused by barium
dust/Barium_Dust_(substance)”, where “Baritosis” and “bar-
ium dust” are annotated with concepts Baritosis_(disorder)
and Barium_Dust_(substance), respectively. Both ExpRB
and InfRB contain the relationship Baritosis_(disorder)|
Causative_agent|Barium_dust_(substance). The sentence is
thus aligned with the role Causative_agent, with the latter
being an aligned role. By using either ExpRB or InfRB
as the role base, different training data are obtained. Since
ExpRB C InfRB, we can see that the training data by align-
ing with ExpRB can only be a subset of that by aligning with
InfRB for any given set of textual sentences.

Evaluation and Discussion

For data projection, we use Metamap to identify SNOMED CT
concepts in a sentence and the explicit and inferred role bases
for sentence alignment as described above. Following [Ma and
Distel, 2013b], we use Stanford classifier [Manning and Klein,
2003] to train a relation extraction model (cf. [Ma and Distel,
2013b] for more details). The aim is to test the effectiveness
of different SNOMED CT role bases (see Table 2 for their
values for three example roles) serving as the Big Data set for
SNOMED CT concept formal definition construction.

Table 2: Sizes of the Explicit and Inferred Role Bases
for Associated_morphology (AM), Causative_agent (CA), and
Finding_site (FS)

| AM  CA FS
ExpRB | 503306 91794 1306354
INfRB | 32454 13225 43079

In the experiment, we take the concepts that are descendants
of Disease(disorder). Among the 65,073 descendants, 1305
concepts are mentioned in our text corpus and thus considered
in the evaluation. A one-concept-leave-out evaluation is used,
that is, each round of experiments removes one concept. The

"http://jcel.sourceforge.net/

removed concept is used as the target concept in the learning
process whose formal definition is to be predicted. The learned
definition is then compared to the original as given in SNOMED
CT to measure the system’s quality.

Our text corpus is obtained by querying Wikipedia with
one-word SNOMED CT concept names, resulting in around
53,943 sentences with 972,038 words. For each target concept,
different training data are constructed by data projection from
ExpRB and InfRB respectively. The test data are the same
for a fair comparison of the effectiveness of different role
bases. As the evaluation measure, we used the reasoning
based precision as defined in [Ma and Distel, 2013a] for formal
definition generation.

Under the experiment setting detailed above, we obtained
a 66.71% average precision when INnfRB is used and 61.41%
average precision when EXpRB is used. The 5.3% average
precision increment shows that the automatically enriched
dataset improves the system’s quality for predicting formal
definitions for SNOMED CT concepts, which will be beneficial
for automatic ontology learning [Ma and Distel, 2013al, which
requires high quality extracted information from texts.

In the future, the differences between explicit and inferred
role bases will be further tested with other algorithms as ex-
ploited for the same task [Tsatsaronis ef al., 2013]. We will
also analyze the proposed approach for other Big Data based
applications which involve large structured data sets.
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Rethinking big data: the role of artificial intelligence and machine learning

Randy Goebel
Alberta Innovates Centre for Machine Learning
Department of Computing Science, University of Alberta
Edmonton, Alberta T6G 2E8, Canada
rgoebel @ualberta.ca

Extended Abstract

It seems that all current data management endeavours im-
pinge on the capture and use of data — whether in science,
engineering, industry or government — now consistently re-
fer to “big data” if they refer at all to data. This use of the
term “big data” is now common, but the breadth of possible
interpretations is enormous. Included in this variety of inter-
pretations are the identification of the attributes of velocity,
variety, volume, veracity [Zikopoulos et al., 2005][Thanos
et al., 2012], or the transition from OLTP-OLAP-RTAP in
the evolution of data mining (e.g., [Heising, 2010]), or the
technology-response definitions like MapReduce [Dean and
Ghemawat, 2004] and HaDoop [Shafer er al., 2010], or even
vendor-driven interpretations like the application develop-
ment model of IBM’s InfoSphere stream mining [Rea and
Mamidipaka, 2010].

The evolution of data analytic methods, from those labelled
as “online transaction processing” (OLTP), to “online analyt-
ics processing” (OLAP), to so-called “real time analytics pro-
cessing” (RTAP) are driven by two key observations: 1) that
as the growth of data accelerates, static analysis of complete
data sets becomes obsolete, and 2) that analysis of large data
streams must consider analytic methods deployed in tempo-
ral data streams constrained by computational resources (see
Figure 1)

From one viewpoint, it isn’t rocket science to consider in-
cremental dynamic characterization of data streams. Packet
sniffers and Internet protocol (IP) data characterization sys-
tems have been doing this for years. But from a more general
viewpoint, the need to develop more elaborate RTAP has en-
croached on new data landscapes, where the data streams are
not just fast and voluminous, but simply impossible to store.

Our characterization of “big data” is based on examples of
data accumulation methods where it seems, in principle, im-
possible to store the data stream; and so the analytics, whether
OLAP or RTAP or any variant, is not just a strategy for ex-
tracting interesting signals, but is in fact a necessary compo-
nent of data management infrastructure. Three cases where
the volume of data anticipated are given in Figure 2, and
arise from the areas of radio astronomy [SKA, 2012], genome
sequencing[Polonsky er al., 20071, and carbon flux sensors
[Porter et al., 2012].

In these examples, the consensus is that the volume and ve-
locity of data is so large that there is no capture alternative.
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Figure 1: Evolution of data analytics (from [Heising, 2010],
page 6)

Square Kilometre Array
10Gbits/sec (10Gb/sec/SQA)
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sec/machine)
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about 25 projects accessible
from NASA

18Gb/day (5Gb/sec/NASA)

Figure 2: Examples of “Big Data”
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Figure 3: An abstraction of three levels of protein representa-
tion

But there remains the scientific challenge of confirming antic-
ipated hypotheses within these data. The underlying analytics
tasks are large scale scientific challenges, where the quest is
not just for expected artifacts in the data, but for scientific
insight for which all uninterpreted data may be crucial.

We this as background, the hypothesis sketched here is as
follows. Given the view that big data means unstorable data,
the challenge is to compress as much of a large data stream
as possible, as abstraction labels, and then retain as much as
feasible of the remaining data stream as the basis for deeper
analysis and detection of new scientific concepts. The pro-
cess of this semantic compression is contingent upon two
foundations of artificial intelligence: 1) knowledge represen-
tation, especially for multi-scale scientific modelling, and 2)
machine learning methods to construct classification methods
to label or “chunk” data stream portions into identified com-
ponents of such multi-scale models.

A simple example arises in the task of inducing the sec-
ondary and tertiary structure of proteins (see Figure 3). With
even the simple multi-scale model at three levels of vocab-
ulary abstraction (amino acids; beta-sheets, random coils,
alpha-helices; 3D cartoon models), one can imagine that a
stream of amino acids can be dynamically compressed to the
vocabulary higher in the multi-scale model, so that the lower
level data no longer needs to be retained.

Of course this hierarchical multi-level compression re-
quires first a compression model in the form of a domain-
specific model, as well as the machine learning processing to
do the classification of the lower levels to the upper levels.

When such mappings are available, a data stream can be
compressed to the known vocabulary labels. In the cases cited
above, where it is likely that not all of the data can be immedi-
ately compressed by such labelling, then the lower level data
stream must be retained for further analytical processing.

We sketch the requirements for these kinds of systems
which combine the existing ideas of stream mining with the
anticipated automatic construction of multi-scale models that
can be deployed to help manage the unstorable volumes of
data. From one viewpoint, the combination of using machine
learning to both build and extend multi-scale models, and to
compress large data streams using those models, is a kind of
automation of the scientific method for interpreting data. The

only perhaps novel aspect is that obtained in the context of
unstorable data streams: we have no alternative to building
systems in this way.

The fundamental challenges are to incrementally and
dynamically use machine learning augmented by domain
knowledge to build and maintain the multi-scale models,
while simultaneously using machine learning directly to use
the multi-scale models to classify the data stream, to reduce
its size within any given resource constrains (e.g., like avail-
able storage) while retaining as much of the uninterpreted or
unclassifiable data as possible, for exploitation in deeper sci-
entific analysis.
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Constraint Programming (CP) [2] is an Al technique that
has received substantial attention in the last 30-40 years ob-
taining substantial success [1]. Originally centralized, on the
verge of XXI century the distributed version of the classi-
cal constraint satisfaction problem (CSP) was proposed and
solved in the pioneer work of Makoto Yokoo and colleagues
[4]. Briefly, a distributed CSP occurs when different parts
of the problem are distributed among different agents (with
computing capabilities) and cannot be joined into a single one
for several reasons. Each agent knows a part of the problem,
but no agent knows the whole problem. A solution is found
by message passing among the agents. After Yokoo’s work,
different approaches have been proposed to solve this kind of
problems considering both satisfaction and optimization ver-
sions.

Big Data is an umbrella term to denote computing activi-
ties that deal with massive amounts of data. Some sources of
big data are large scale e-commerce, social networks, science
(for instance, consider experiments in astronomy or biology),
and Internet.

In some cases CP applications are faced with BD. Distri-
bution has been considered as a possible technique to deal
with the issues that BD poses to CP [3]. In this note, we
want to go deeper in this relationship, to identify trends in
distributed constraint satisfaction/optimization of special in-
terest for handling BD instances.

Exact vs. Approximate Solving. First thing that comes to
mind is exact against approximated resolution: can BD in-
stances be solved approximately, or the exact solution is re-
quired? Is strict global consistency needed? Equivalently, is
the strict global optimum required, or a good quality subop-
timum could be enough? Without trying to be too conclusive
here, we guess that there is room for approximate solutions.
Several reasons support this idea. The most obvious one is
that exact solution may require an exponential time in the size
of the data (worst case), and if the amount of data is huge,
this is simply not feasible. ! Another reason is that it could
be preferable to assure some degree of consistency —although
this consistency were not completely global— than no consis-
tency at all. Finally, BD instances are real-world problems
and in these cases, finding the exact solution (global opti-

'If the data considered satisfy some properties (for instance, a
small induced width) exact resolution might still be feasible.

mum) is not as important as in academic problems, typically
more theoretically-oriented.

Agent Granularity. A simplistic view of the task done by
agents in distributed constraint satisfaction/optimization is
that it is composed of two main elements:

1. Intraagent consistency: agent selects values for its vari-
ables trying to maximize its internal consistency.

2. Interagent consistency: agent selects values for its vari-
ables trying to maximize the consistency with other
agents.

These two elements are not independent and some criteria
exist to solve potential conflicts. Typically, intraagent con-
sistency is subordinated to interagent consistency, which is
a reasonable option since computation inside an agent is
cheaper than computation involving several agents, includ-
ing message passing, etc. Most existing work on distributed
constraint satisfaction/optimization is focused on the second
point (interagent consistency), ignoring —to a large extent— is-
sues related with intraagent consistency (because centralized
approaches can be applied inside each agent). It is worth not-
ing that the second point is more costly than simply enforcing
consistency among the variables of the different agents under
a centralized view, that is, enforcing interagent consistency
has a extra overhead due to distribution that is not present in
centralized approaches.

A common assumption in distributed constraint satisfac-
tion/optimization is that each agent holds a variable. We
claim that this assumption is no longer valid for BD instances.
The obvious reason is size: one cannot afford ”one agent, one
variable” when the number of variables is huge, because the
number of agents would also be huge, causing very serious
implementation problems (number of computers, overhead,
communication issues, etc). In addition, there is another rea-
son to remove that assumption. When advocating distribu-
tion for BD in CP, we are expecting to obtain benefits with
respect to a centralized approach. This is because we ex-
pect that a substantial amount of work could be done con-
currently on different computers, and that work concurrently
done remain valid for the final solution. If an agent is lim-
ited to a variable, enforcing intraagent consistency originates
practically no work once a consistent domain has been set
for that variable, and all the attention is focused on enforc-
ing interagent constraints. But if comparing this with a cen-
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tralized approach, the work done to enforce interagent con-
straints is slower (done by message passing), more expen-
sive (involves communication), and it is highly changeable
(because of backtracking). Enforcing intraagent consistency
concurrently may offer good opportunities to gain practical
efficiency, and it does not seem to be a good idea to eliminate
it (as implied by that assumption).

Synchronous vs Asynchronous Algorithms. Another di-
mension in distributed constraint satisfaction/optimization is
about which type of distributed algorithms are more suitable.
According to the way agents take their decisions, distributed
algorithms are divided in two main classes: synchronous and
asynchronous (intermediate options also exist). Typically, a
synchronous algorithm occurs when agents take their deci-
sions following some kind of external signal, or waiting for
some external event to occur. Alternatively, agents following
an asynchronous algorithm do not wait for particular events
to take their decisions: a agent takes its own decisions and
the other agents are ready to react to any decision taken by
that agent (this occurs concurrently for all agents in the sys-
tem). Broadly speaking, synchronous algorithms synchronize
their actions following some kind of “external clock” (and in
many cases, they can be seen as distributed versions of exist-
ing centralized algorithms), while asynchronous algorithms
are closer to a kind of “’chaotic iteration”, where agents take
decisions and try to adapt themselves to the decisions of oth-
ers. Typically, under synchronous algorithms agents take de-
cisions based on an updated view of the other agents, while
less updated views occur under asynchronous ones. This has
impact in the quality of the decisions that agents take, and the
actions for undoing that agents have to perform when their
view is correctly updated. Synchronous algorithms seem to
be less concurrent (= offer less opportunities for concurrency)
than asynchronous ones.

There is some debate in the distributed constraint satisfac-
tion/optimization community about which type of algorithm
is more adequate for which problems. Considering BD prob-
lems, its seems that the most crucial point is concurrency,
the more work to be done in parallel the better for efficiency.
Asynchronous algorithms are the ones that offer a higher de-
gree of concurrency. In this sense, they seem to be more ap-
propriate than synchronous ones to solve BD problems. Any-
way, experimental work is needed to substantiate this claim.

Conclusion. As executive summary, this note considers the
use of distributed constraint satisfaction/optimization tech-
niques for dealing with BD problems inside CP. In that case, a
promising direction seems to be looking for approximate so-
lutions, using asynchronous algorithms with agents handling
several (many) variables. We believe that these options rein-
force mutually, looking for a feasible processing of BD in-
stances that involve constraints. More work, specially of ex-
perimental nature, is needed to confirm the discussed points.
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